Final Technical Report to the

Office of Naval Research

by

Jeffery L. Kennington
Department of Computer Science and Engineering
SOUTHERN METHODIST UNIVERSITY
School of Engineering and Applied Science
Dallas, Texas 75275 (214) 768—3088
jlk@seas.smu.edu

for

Real Time Optimization: Algorithms and
Applications

ONR Contract Number N00014—95—-1—-0645

SMU Number 5—25175

30 August 1996

TED 3
pTIc QU pLITY 1gPBOT

DISTRIBUTION STATEM

Approved for public release;
Distribution Unlimited

19960829 114

* DISCLAIMER NOTICE

". s 43

- THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
 CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.

unclassified
SECURITY CLAGSIFICATION OF THIS PAGE

16. SUPPLEMENTARY NOTATION

@
REPORT DOCUMENTATION PAGE
1a, REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE .
unrestricted ®
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION Bb. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
. . (If applicable) . ¢
Southern Methodist Univ. CSE 0ffice of Naval Research
6c. ADDRESS (Gty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
6425 Airline Drive 800 Horth Quincy Street
Dallas TX 75275-0122 Arlington VA 22217-5660
8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ¥
ORGANIZATION (If applicable)
ONR :
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Arlington VA 22217-5660 @
11. TITLE (Include Security Classification)
12. PERSONAL AUTHOR(S) L
Jeffery L. Kennington
13a. TYPE_OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT ®
technical rROM 4/1/9518/31/96 8/30/9%6 119

17. COSAT! CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number)
assignment probiem, generalized networks, ®
class scheduling

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This document contains three technical reports. The first report presents anew branch—and—bound ¢
algorithm for the assignment problem with side constraints. Models of this type are used in studies
involving the optimal assignment of sailors to billets. Problems having 300 sailors and 600 billets with
90 potential assignments for each sailor were solved in less than five minutes on a Dec Alpha
workstation. The second report presents several new algorithms for the problem of developing an
annual class schedule for either a Navy C—School or a Navy A—School. Algorithmsbased ona greedy
heuristic were found to perform very well on problems for both types of schools. The final report
presents a new dual simplex based algorithm for the generalized network problem. In empirical tests,
our specialized code was found to be approximately twenty times faster than CPLEX 3.0.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

CuncrassiFleD/uNuMITED [SAME AS RPT.

CJ oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION ®
unclassified

22a, NAME OF RESPONSIBLE INDIVIDUAL
Jeffery L. Kennington

22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL
(214) 768-3088

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. -

unclassified

Table of Contents

I. Statement of Work

II. Navy Personnel Assignment

III. Class Scheduling For Navy Training Schools

IV. Generalized Networks

Appendix A: The Constrained Assignment Problem
Appendix B: Class Scheduling For Navy Training Schools
Appendix C: Generalized Networks

Appendix D: Distribution List

I. Statement of Work

During the 1970’s most optimization models were run in batch mode on a large
mainframe and were used to help solve some type of planning problem. During the
1980’s we saw more demand for optimization models which were components of some
real time system. That is, decisions were being made sequentially and some
optimization model was communicating with an on—line database and was being used
to provide information for real time decision making. In the 1990’s, clients are
demanding real time systems for problems which were formerly solved in batch mode.

In the area of assigning sailors to technical schools (both C and A Schools) and
assigning sailors to job billets, the Navy is already developing on—line computer
systems. The Job Advertising and Selection System (JASS) runs on—line and allows a
career counselor on a ship to down load billet information from a server located in
Washington D.C. A version of JASS which contains an optimization module is being
developed and our research group developed the optimization software which is being
incorporated into the system. We expect additional demand for high speed
optimization software in the area of Navy personnel assignment and our work on the
constrained assignment problem is related to this demand.

The Navy is currently developing a new reservation system to improve the assignment
of its 400,000 sailors to C and A training schools. To help insure the success of the new
reservation system, modern mathematical models and computational tools are needed
to help generate the class schedules offered by the various training schools. The
problems are members of the class NP—Hard and require special heuristic algorithms
for real time application. Our work on efficient algorithms for class scheduling is
related to this new reservation system.

Other Navy applications involve real time targeting of cruise missiles. Generally a
missile is called a cruise missile if its speed is sub—sonic, if it uses a built—in global
positioning navigation system (GPS/INS), and if its range is at least several hundred
miles. A specific mission for a cruise missile is programmed by specifying a sequence of
co—ordinates. The missile uses its on—board computational facilities and its GPS/INS
system to guide it through this sequence of points. At present, once a missile is
launched, its mission can not be modified. However, new versions are under
consideration which can be redirected after launch. Finding new targets involves
on—line optimization and our work on efficient primal and dual algorithms for
generalized networks could support this effort.

II. Navy Personnel Assignment

After several years of down sizing, the Navy currently has approximately 400,000 sailors
each of whom is assigned to a job billet for a tour of duty lasting from two to five years.
Near the end of a tour (during the last six months) the sailor is placed into an
assignment pool of sailors who are eligible for anew assignment. Sailors assigned to sea
billets are usually rotated to shore billets and those stationed on the shore are usually
assigned to a sea billet. Some 200 detailers within the Bureau of Navy Personnel are
responsible for making the actual assignments. Every one that has studied this system
agrees that Navy personnel assignment is a very complex process which involves
trade —offs among conflicting policies. It is also complicated by the fact that there are
many more billets than sailors.

Over the last decade, operations research analysts at the Navy Personnel Research and
Development Center have developed several optimization models for various studies.
Many of these optimization models are binary integer programming problems with
special structure. The underlying structure which occurs most frequently is that of an
assignment problem with a few linear side constraints. The side constraints generally
involve a budget constraint on PCS (permanent change of station) cost and may involve
quotas on seats at technical schools.

Our research team has developed a special algorithm for the constrained assignment
problem. The algorithm is based on branch—and—bound and uses a Lagrangean
relaxation to improve the lower bound. A complete description of this algorithm
appears in Appendix A.

III. Class Scheduling For Navy Training Schools

Before assuming a new assignment, a sailor frequently is required to complete one or
more Navy training classes. Experienced sailors (E4’s through E9’s) attend advanced
skills training courses while new recruits (E1’s, E2’s, and E3’s) take a set of basic
courses. The advanced courses last from one week to over sixmonths and are offered by
Navy C Schools. The basic courses are generally shorter and are offered by Navy A
Schools. Over 2000 different courses are taught each year at a cost of over $1.3 billion.

Navy School managers develop annual class offerings which are then used by the
detailers in making billet assignments. Until recently, the class schedules were
prepared manually by personnel at each School. Due to budget and instructor
reductions, it is important that these Navy Schools operate as efficiently as possible
making optimal use of their resources (facilities and instructors).

For C—Schools the complicating feature is that many sailors who attend the School
need several different courses. A sailor only attends one course during anweek period,
then he/she would go to another course. Ideally if a sailor needed four courses, then
they would be scheduled back—to—back. This would reduce the idle time between
courses.

The A—School courses are team taught with different numbers of instructors required
on different days of a given course. The objective is to develop a feasible schedule that
uses the smallest number of instructors on the busiest day of the year.

Algorithms for these scheduling problems have been developed and tested on real
data. The results of our study may be found in Appendix B.

IV. Generalized Networks

There are many applications in the area of network flows where the flow either
increases or decreases as it passes along an arc. In the area of Navy unit personnel
readiness, promotions and attrition can be modelled using this feature.

We developed a new optimizer for this model that has both a primal and dual simplex
implementation. In empirical tests, we found that the new optimizer is approximately
twenty times faster than CPLEX 3.0 on moderate sized problems. A summary of our
investigation may be found in Appendix C.

Appendix A

The Constrained Assignment Problem

Technical Report 93—-CSE—-49

A Truncated Exponential Algorithm for the Lightly
Constrained Assignment Problem

Jeffery L. Kennington
and
Farin Mohammadi

Department of Computer Science and Engineering
School of Engineering and Applied Science
Southern Methodist University
Dallas, Texas 75275—-0122

Revised May 1996

Comments and criticisms from interested readers are cordially invited.

ABSTRACT

This manuscript presents a truncated branch—and—bound algorithm to obtain a
near optimal solution for the constrained assignment problem in which there are only a
few side constraints. At each node of the branch—and—bound tree a lower bound is
obtained by solving a singly constrained assignment problem. If needed, Lagrangean
relaxation theory is applied in an attempt to improve this lower bound. A specialized
branching rule is developed which exploits the requirement that every man be assigned
to some job. A software implementation of the algorithm has been tested on problems
with five side constraints and up to 75,000 binary variables. Solutions guaranteed to be
within 10% of an optimum were obtained for these 75,000 variable problems in from
two to twenty minutes of CPU time on a Dec Alpha workstation. The behavior of the
algorithm for various problem characteristics is also studied. This includes the tightness
of the side constraints, the stopping criteria, and the effect when the problems are un-

balanced having more jobs than men.

ACKNOWLEDGMENT
This research was supported in part by the Air Force Office of Scientific Research un-
der Contract Number AFOSR F49620—-93—1-0091, the Office of Naval Research un-
der Contract Numbers N00014—91—-J—1234 and N0O0014 —95—1—-0645, and the Navy

Personnel Research and Development Center.

I. INTRODUCTION
The constrained assignment problem is to determine a least cost assignment of m
people to n jobs such that an additional set of constraints is satisfied. This model is a

binary linear program and may be stated mathematically as follows:

minimize Z CiiX;; (1)
(i)HEA

subject to Z 3 = 1, i=1,...,m (2)
iBGHEA

% = 1,j=1..n0 €)
iGj)EA

x; e {01}, all (i) e A (4)

Z d%]?xij < 1k, k=1,..,s ()
(iHeA

where X = 1implies that person iis assigned to job j at cost of Cij» dg denotes the coef-
ficient of X;; in the kth side constraint, r¥ denotes the right—hand—side for the kth side
constraint, and A is the set corresponding to the feasible assignments. Note that the
problem allows for more jobs than people. Many practical problems have this feature.
It also allows for the case in which the number of people exceeds the number of jobs.
For this case, one simply reverses the definition of people and jobs.

The problem (1) —(4) with m=n is the classic sparse assignment problem which is

also known as the bipartite matching problem. This special model is a member of the

class P and there are excellent algorithms and software implementations of these algo-
rithms available. We use one of these software implementations as a subroutine in this
investigation.

Since (1)—(5) is a binary linear program, all the literature on integer program-
ming applies (see Geoffrion and Marsten [1972], Salkin [1974], Parker and Rardin
[1988], Nemhauser and Wolsey [1988]). A special case in which the side constraints
have the generalized upper bound (GUB) structure has been studied by Ali, Kenning-
ton, and Liang [1993]. A relaxation/decomposition procedure that involves solving a
series of pure assignment problems is used successfully. Ball, Derigs, Hilbrand, and
Metz [1990] also present an algorithm for the matching problem with generalized up-
per bound side constraints. Another special case for s=1 and m=n has been studied by
Gupta and Sharma [1981], Aggarwal [1985], Bryson [1991}, Kennington and Moham-
madi [1994, 1995]. The only specialized algorithm for (1)—(5) is the two phase proce-
dure of Mazzola and Neebe [1986]. The first phase uses subgradient optimization to
obtain an advanced start for the branch —and—bound method used in the second phase.

This research was motivated by our work with the Navy Personnel Research and
Development Center located in San Diego. This general model often appears in vari-
ous analytical studies which involve the assignment of sailors to billets. Most of these
applications are for the unbalanced model in which there are more jobs (billets) than
sailors. The Navy has approximately 400,000 sailors which are periodically reassigned
to different billets. Sailors rotate between sea billets and shore billets with various re-
strictions on these assignments. One important restriction involves the cost of moving a
sailor and his/her family from one location to another. This is referred to as the cost for

a permanent change of station and the corresponding side constraint is known as the

PCS budget constraint. Fleet balance between the Atlantic and Pacific Fleets is also
important and leadsto other side restrictions. The objective of this study was to develop
a truncated branch—and—bound algorithm to solve the constrained assignment prob-
lem and to provide an empirical analysis of this algorithm on a variety of assignment

problems having only a few side constraints.

II. THE GENERIC ALGORITHM
Consider the problem P(S) = min{ cx:x € S}. Using the terminology of Geoffrion
and Marsten [1972], v[P(S)] denotes the optimal objective function value for P(S),
P(S) denotes a relaxation of P(S), and CL denotes the candidate list. The generic
branch—and—bound algorithm used in this investigation may be stated as follows:
Input:
1. The problem, P(S).
Output:
1. The solution vector, x°.
2. The objective value corresponding to X*, v'.(V' = oo implies that S = @)
Procedure BAB;
Begin
initialize:
CL:= {P(S)}, v:= o
while CL = ® do
comment: select a candidate problem for analysis.
select P(U) € CL, CL:= CL\ {P(U)};
if P (U) has a feasible solution, then
if v[P(U)] < v', then
let X be an optimum for P (U);
ifX € S, then
X:=X,V:=cX;

else

apply a heuristic to X in an attempt to create X such that X € S and
cX <V}
if successful, then x:= X, V= cX;
comment: branching
create Uy, Uy, ..., U, such that U1uUzU ...uU, = U and U, nU, =@
foralli=j e {1,2,..,p};
CL:= CLU{P(U4), P(Uy), ..., P(U)};
end if
end if
end if
end while

end.

I1II. THE SPECIALIZED ALGORITHM

The specialized techniques developed for the model (1) — (5) are presented in
this section. This includes a relaxation, a branching rule, and fathoming rules based
upon the underlying assignment structure. These are combined to form a new trun-
cated exponential algorithm for the constrained assignment problem.

3.1 The Relaxation

Let D denote the matrix corresponding to the coefficients in (5), x denote the vec-
tor corresponding to the binary decision variables, ¢ denote the vector of costs, and r
denote the vector of right—hand—side values for the side constraints. Then the
constrained assignment problem may be denoted as P(S) where S = {x: (2), (3), (4),
(5)}.Let 1denote avectorof I'sand S = {x: (2), (3), (4),1Dx < 1r}. Then P(S)isavalid
relaxation for P(S). Application of the algorithm in Kennington and Mohammadi
[1994a] to solve the singly constrained assignment problem will yield a lower bound for
P(S), the optimal Lagrangean multiplier corresponding to the constraint 1Dx < 1r,and
X € S.IfX € S, thencX is an upper bound for P(S).

LetS = {x:(2), (3), (4)}. Recall that a Lagrangean dual for P(S) is the problem
max {L(a) :a >0} where L(a) = min {cx+ a(Dx—1):Xx € S }. We use the optimal
Lagrangean multiplier and X from the singly constrained algorithm to form an ad-
vanced starting value for a . Lety denote the solutionfor L(a). Then w = Dy—risused

to modify a for successive steps. A limited number of these steps will be performed in

this algorithm.

3.2 The Branching Rule
Consider any node in the branch—-and—bound tree. If the relaxation P(S) has no
feasible solution, then this node may be fathomed. Otherwise, an assignment will be

used to create the branches as illustrated in Figure 1.

Figure 1 here

For a given node in the branch—and—bound tree let F'= {(i,j): X; =1}and F*=
{G,)): X; =0} LetU={xe S: x; = 1forall (ij) € F'and x;; = Oforall (i,j) € F*}. The
relaxation solved at each node in the branch—and—bound tree is P(U) which is a singly
constrained assignment problem with some assignments fixed. Letx € U, T = {(i,j) :
X; =1,(1j) ¢ F}, andt= | T|. Consider the t+1subsetsof U (U1, Uy, ...,U,,,) created

in the following manner:

U—1 = {X (S U—: xll.]l = 0, (i‘l,j'l) € T}) T1 = T\{(i1,j1)};

-U—Z = {X € U: Xiljl = 1: xizjz = 03 (i23j2) € T1}) T2 = T1\{(i2:j2)};

U3 = { XeE -G: Xiljl = 17 xiz]‘z = 17 Xi&i:{ = O’ (i3yj3) € T2}7 T3 = TZ\{(i3)j3)};
U ={xeT:x Xij, =1, X5 =L x; =0,(ipji) € T}
U...={xeU: x; = 1forall (ij) € T} . Note that, U = U2V ... UT,,,and
U,N0,= ®forall i = j.

Consider a node in the branch—and—bound tree having f; edges fixed at 1. Then
branching from this node will produce t+1 = n—f;+1 new candidate problems. From
Figure 1 it can be seen that the last node (i.e., U,,) need not be created since it was ex-

amined at the parent node. Therefore, each branching produces t candidate problems.

A-10

3.3 The Candidate List

For our implementation of the algorithm, asingly constrained assignment prob-
lem will be applied to P(U,) and the results placed in the candidate list (i.e., a problem
is solved before it is placed in the candidate list). The motivation for placing solved
problem in the candidate list is that the solution for P(U;) can be easily modified to ob-
tain an advanced starting solution for P(U,.). Therefore solving the sequence of prob-
lems P(U), P(U)), ..., P(U,) should require only a moderate amount of computational
effort. Hence, each entry in the CL consists of the five tuple (F', Fi1x , B, u)where X €

U,, B < v[P(U))], and u the optimal Lagrangean dual for the singly constrained prob-

lem.
3.4 Fathoming Rules
At any node p of the branch—and—bound tree let U, F*, and F°be as defined in

Section3.2. LetM = {1, 2, 3,..., m}\ {i: (i,j) € F*}, then the following rules may be used

to fathom a node. If

(i ')ze:lﬂd§§ * 'g’,{min(dg (L) € AN FO) > I
l,) 1

for any k, then node p can be fathomed. That is, no selection of the free variables will
satisfy the kth side constraint. If
> e+ > min(: () € AVFY) >
()R ieM
then node p can be fathomed. That is, no selection of the free variables will result in a
solution superior to the incumbent.
Ifmin {1Dx:xe U } > 1r,then node p can be fathomed. That is, no selection of the

free variables will satisfy all side constraints simultaneously. Let § be the best lower

A-11

bound obtained for node p and ¢ be the termination tolerance. We will fathom node p if
V' —B <& .Usingthisrulewithe = 0.1 results in a solution from the procedure guaran-
teed to be within 10% of the optimum and & = 0.01 produces a solution within 1% of an
optimum. This rule speeds convergence at the expense of an exact solution.
3.5 The Algorithm
In thissection the information presented in Sections 3.1—3.4isused to construct a
truncated exponential algorithm.
Input:
1. The cost vector, c.
2. The feasible region S.
3. The set of (man, job) pairs corresponding to eligible assignments, A.
4. Termination tolerance, ¢.
5. The maximum execution time, tmax.
6. The maximum number of Lagrangean relaxations to be solved at each node,
limit.
Output:
1. The solution vector, X" .
2. The objective value corresponding to x*, v'. (V" = o implies that the problem is
® infeasible.)
Procedure ASSIGN +s;
Begin
® initialize:
comment: Node 1 in the Branch—and—Bound tree.

V= o, F= @, Fii= P;

A-12

ASSIGNP1(P(S), %, B, u);

if B = —co then terminate;

ifX € Sthenx" :=% ,v:=cX;

else LAGRANGE(X , B, u);

comment: Tolerance test for fathoming.

ifv' — B < ¢ef then terminate;

CL:= {(F,F, %, B, u0)};

while CL = @ do
SELECT APROBLEM(F,F}, X, B, u);
BRANCH(CL, F*,F, %, B, u);

end while

end.

procedure ASSIGNP1(P(U), %, B, u);

Begin
initialize:
Bi= —oo;

apply the ASSIGN+1 algorithm (Kennington and Mohammadi [1994]) to P(U);
if P(U) has a feasible solution then

let X be the best feasible solution found for P(U);

let B be the best lower bound found for P(U);

let u be the optimal Lagrangean dual for the singly constrained problem;

end if

end.

A-13

procedure SELECT A PROBLEM (F%F!, %, 8, u);
Begin
select (F,F!, X, B, u) € CL, CL:= CL\ (F% F}, X, B, u);
end.
procedure BRANCH(CL, F°F, %, B, u);
Begin
initialize: _
t:= 0, G:= {(i,)): %=1 (ij) ¢ F};
M:={1,2,3,..,m}N{i (i,j) € F'};
while G = ® do
comment: Fix a variable at zero.
let (i1,j1) € G, G:= G\ {(i1,j1)}, Fo= Fou {(i1,j1) };
ASSIGNP1(P(U), X, B, w);
if # —cothen
ifX € SandcX <Vv'thenx :=X ,v=cgX;
else LAGRANGE(X , B, u);
comment: Tolerance test for fathoming.
ifv:— B > ef then CL:= CL v {(F,F}, %, B, u)};
comment: Permanently assign man iy to job j;.
M:= M\ {i1}, F:= F' u {(i1,j1)};
Fo=Fou {(i1,j) : (ir,j) € Aforallj} u { (i,j1) : (i,j1) € Afor alli N\ {(i1,j1)};
comment: Assignment polytope feasibility tests.

ifz Cjj + z min(c; : (1,]) € A) > v’ then return;
(ij)EF iEM

A-14

fork=1,...s
if > df+ > min(d}
(ij)EF ieM
end for
end if
end while
end.
Procedure LAGRANGE(X , f8, u);
Begin
initialize:

a:=ul,yi=%,t:=1;

: (i,j) € A) > r* then return;

while (v*—f > ¢f and t < limit) do

w:= Dy—-r;

fori=1,..,s
ifw, >0, then a,:= 1.25a,;
ifw, <0, then ¢,:= 0.75q,;

end for

let y be a solution for L(a) and B := max{f, v[L(a)]};

ify € Sand cy< v' thenx':=y, vi= cy;

ti=t+1;
end while

end.

A~15

This algorithm exploits the structure of the model (1)—(5) in several ways. Per-
manent assignment of a man to a job implies that all other variables involving this man
and job may be fixed at zero. The relaxation is a singly constrained assignment problem
for which near optimal integer solutions can be obtained using the results in Kenning-

ton and Mohammadi [1994]. Special fathoming rules which are based upon the assign-

ment polytope are used. -

A-16

IV. EMPIRICAL ANALYSIS “

The specialized algorithm has been implemented in software (called AS-
SIGN+s) and empirically analyzed on an Alpha workstation by Digital Equipment
Corporation. The code is written in Fortran and uses ASSIGN +1 (see Kennington and
Mohammadi [1994]) to solve the singly constrained assignment problems. ASSIGN+1
is an implementation of the Lagrangean relaxation algorithm for sparse singly

constrained assignment problems.

A test problem generator was developed which has the following inputs: (i) the

number of men, (ii) number of jobs for each man, (iii) the maximum cost, T, (iv) the

number of side constraints, s, and (v) the side constraint multiplier, z. Both the costs
and the side constraint coefficients are uniformly distributed over the range (0, T). We
randomly generate a feasible assignment, ¥, and set the right—hand—side of the side

constraints, , to zDX. Obviously, as z becomes smaller, the feasible region becomes
smaller and for sufficiently small z {x: (2), (3), (4), and (5)} is usually empty.

The generator was used to generate two sets of 400x400 problems described in
Table 1. As Table 1 indicates, the problems generally become more difficult as z be-
comes smaller and for z small enough the feasible region is empty. For all runs, the stop-
ping criteria used is e=10% and the % deviation reported in column 8 gives a guarantee
on the deviation from optimality. All times are CPU time and exclude the time for both
input and output. The run with problem number 2 having z=0.4 was terminated after
the candidate list grew to 25,000 entries. As we expected, there exists problems which

cannot be solved in areasonable amount of time and storage using this approach. Tight-

A-17

ly constrained problems having 48,000 binary variables definitely stretches the capabil-

ity of this software implementation.
Table 1 here

Tables 2 and 3 give our empirical results with 30 randomly generated assignment
problems with various sizes all having five side constraints. For all of the problems
tested we were able to find a solution guaranteed to be within 10% of an optimal solu-
tion. The six smallest problems have 3,000 binary variables. Five of these were solved in
less than two minutes each and one required about six and one —half minutes. The six
largest problems had 75,000 binary variables and were all solved in less than twenty one
minutes each. The most difficult problems (300x300) have 27,000 binary variables. Two
of these six problems required eighty minutes to solve. These two difficult problems
also had very tight side constraints.

Tables 2 and 3 here

This work was motivated by models for assigning sailors to ships and for this ap-
plication the number of jobs always exceeds the number of sailors available. Frequently
the job list covers alonger period than the list of available sailors which produces a large
imbalance in n and m. Tables 4 and 5 present our empirical results from solving 18 un-
balanced assignment problems with five side constraints. For the 300x600 problem with
z=0.6 presented in Table 5, the run was terminated due to candidate size limit. For all
other test problems we were able to obtain a solution within 10% of an optimum.

Tables 4 and 5 here

For all test problems we search for a solution within 10% of an optima. To study
the effect of the tolerance value on the performance of the algorithm we solved two

200x200 and two 200x400 problems with different tolerance values. Figure 2 indicates

A-18

that, as expected, a decrease in the tolerance value leads to an increase in the execution
time. For all four problems, a point was reached in which a slight decrease in the toler-

ance resulted in a large increase in the solution time.

Figure 2 here

A-19

V.SUMMARY AND CONCLUSIONS

We have presented a fruncated exponential algorithm for the constrained assign-
ment problem. The algorithm is applicable for both balanced and unbalanced assign-
ment problems having inequality side constraints. The algorithm uses a specialized
branching rule that exploits the underlying structure of the problem. Bounds are ob-
tained by solving a singly constrained assignment problem followed by a few iterations
with a Lagrangean relaxation.

We present empirical results for both balanced and unbalanced problems having
five side constraints. For problems having 75,000 binary variables, solutions guaran-
teed to be within 10% of an optima were obtained in less than twenty one minutes on a
Dec Alpha workstation. Our analysis indicated that as the side constraints become
tighter the execution time and number of branch—and—bound nodes increases. For
one of the 300x300 problems having 27,000 arcs, the execution time increased from
about one minute to about eighty minutes as a result of side constraint tightening. Our
analysis also indicates that the performance of the algorithm on unbalanced problems
is generally better than its performance for the balanced problems with the same num-
ber of binary variables. The Navy personnel assignment problems which motivated this
study are all unbalanced models.

For problems of this type, having only a few side constraints, we believe that this is
the current best algorithm and software implementation available. Solutions guaran-
teed to be within 10% of an optimum should be obtained for most problems having few-

er than five side constraints and fewer than 20,000 arcs.

A-20

VI. REFERENCES

V. Aggarwal [1985], “A Lagrangean—Relaxation Method for the Constrained Assign-
ment Problem,” Computers and Operations Research vol. 12 pp. 97—106.

I. Ali, J. Kennington, and T. Liang [1993], “Assignment with En Route Training of Navy
Personnel,” Naval Research Logistics Quarterly vol. 40 pp. 581—592.

M. Ball, U. Derigs, C. Hilbrand, and A. Metz [1990], “Matching Problems with Gen-
eralized Upper Boﬁnd Side Constraints,” Networks vol. 20 pp. 703—721.

N. Bryson, [1991] “Parametric Programming and Lagrangian Relaxation: The Case of
the Network Problem with a Single Side—Constraint,” Computers and Operations
Research vol. 18 pp. 129—140.

A. Geoffrion and R. Marsten [1972], “Integer Programming Algorithms: A Framework
and State—Of—The~ Art Survey,” Management Science vol. 18 pp. 465—491.

A. Gupta and J. Sharma [1981], “Tree Search Method for Optimal Core Management
of Pressurized Water Reactors,” Computers and Operations Research vol. 8 pp.
263—-269.

J. Kennington and E Mohammadi [1994], “The Singly Constrained Assignment Prob-
lem: A Lagrangean Relaxation Approach,” Computational Optimization and Ap-
plications, vol. 3 pp. 7—-26.

J. Kennington and E Mohammadi [1995], “The Singly Constrained Assignment Prob-
lem: An AP Basis Approach,” Computational Optimization and Applications, vol. 4
pp. 347-374.

J. Mazzola and A. Neebe [1986], “Resource Constrained Assignment Scheduling,” Op-
erations Research vol. 34 pp. 560—572.

A-21

®
G. Nembhauser and L. Wolsey [1988], Integer and Combinatorial Optimization, John
Wiley and Sons: New York, NY.
R. Parker and R. Rardin [1988], Discrete Optimization, Academic Press Incorporated:
o

New York, NY.
H. Salkin [1974], Integer Programming, Addison—Wesley Publishing Company: Read-

ing, Massachusetts.

A-22

Figure 1. Example of branching rule for a 3x4 problem.

A-23

Time (min.) Time (min.)
! L] .
6 ‘l 10 ‘l
1 \‘
5 ! 8 \
4 ‘! .i
i\ 6 ‘l
s 1
3 ‘ '
) [}
[4)
2 “ l. .
L} = e | .
1 h‘-~I-~-l-—4 2 ’m\
b
%2 7 s & 1 2 % %02 i s 8 10 12 14 c%
a. Problem #1 (200x200) b. Problem #2 (200x200)
with 1200 arcs with 1200 arcs
Time (min.) Time (min.)
2 n [
3 “
1‘ \
s 2 t
13 1
1‘ "
;‘ "
1 l‘ “
s‘ 1 “
|‘ “‘
L--.""'ﬂ L--r--l--.
S 7 s & 10 12 % %% 7 & 8
c. Problem #3 (200x400)
with 1200 arcs

10 12e%

d. Problem #4 (200x400)
with 1200 arcs

Figure 2. Plots of time versus the stopping tolerance for four problems.

A-24

Table 1. Empirical results from the algorithm for 400x400 assignment problems with five side
constraints (48,000 columns and 805 rows).

Prob. z # BAB # AP’s Time LB UB Per Cent | Node # of
Nodes Solved | (min.) Deviation | Incumbent

1.0 189 216 0.71 5.270 5,309 0.74 13
0.9 244 1,958A 4.74 5,505 5,768 4.78 22
0.8 274 2,119 3.96 6,999 7,271 3.89 78

1 0.7 952 8,288 | 12.66 10,991 11,725 6.68 859
0.6 14.142 124.222 | 166.00 20.820 22,713 9.09 13.943
0.5 4,214 35,362 | 4539 47,446 50,343 6.11 4,157
04 1 2 0.00 problem has no feasible solution
1.0 224 503 1.66 5,370 5,559 3.52 2
0.9 253 1,801 4.57 5,830 6,132 5.23 34
0.8 700 5,434 9.26 7,815 8,373 | 7.13 492

2 0.7 3,114 25,786 | 42.93 12,510 13,649 9.10 2,938
0.6 3,094 28,694 | 40.92 23,606 25,188 6.70 2,871
0.5 3,505 29,642 | 3145 50,939 54,690 7.36 3,340
0.4 25,0001 79,160 | 53.37 148,825 no feasible solution obtained
0.3 1 2 0.0 problem has no feasible solution

1 terminated due to candidate list size limit.

A-25

e 96°S 08LvC S8E€T 19°0C €L8°s 019 90 | 0OSI

6€1 oLy £€8‘L 18H°L 0L0k 12'c L6E 80 | osI 00SX00S
S SS'p SOv's 0LI‘S LEE 69S §9Z 0T | 0ST

evl 61’6 PI9€T L9S‘TT 60'6 8Ly £0S 90 | 0zl

9p1 £0°8 yS6'L £9€°L €9 Ips'c SZE 80 | 0TI 00VX00¥
41 L8'T 80€'S 091‘s wi 60S 812 01 | 0z

8€S°TI L8'6 790vC 106°1C 8E°6L T8E'SIT| 6L9CY | 90 | 06

8L 06°S 900'8 6SS‘L L8'T 7687 obe 80 | 06 00€X00€
(41 S6'1 1p9‘s £€5°‘S 780 978 b81 01 | 06

GLLS S6°6 9EE'YT pIETT 8L'ST £61°CS €8s |90 |09

s 798 S8Y'L 0689 v0°'C SEL'S LOL 80 |09 002%002
14 €90 £SI°S I€1’s €10 z61 111 01 | 09

989°s 00'01 665°0C 9ZL8T 099 66L00I] S8E€6IT | 90 | OF

voy 06’y 060°L 8SL’9 870 0ELE Lvb 80 | ot 001X001
8L1 L9'9 9Sg's 120°s 90°0 658 SIT 0T | o€

JuIQLUNOUY uoljeIA((‘urw) pasjos SIpON | Z ugjy/sqof wxu
J0 # 9poN U3 13 an a1 auigy, sdV# | dvd# UoONAIISI([WAIqoId

A.muz_&.:m:cu IPIS AL} Ay SwIqo.Id :d&

-unyra03[e 9y) Suisn T 395 widfqoad s sypnsal [edrdury g qeL,

A~26

o o o o L o o ®
827 pI'L £89°LT 8€8°ST TL61 yST9 0€9 90 | 0ST
pET S8°9 pIS‘8 896°L 69°6 S8e'e (1) {4 g0 | 0sI 00SX00S
£ | w1 $00°S €€6'Y 0S°'L 1€LY 9€E 01 | 0SI
29¢€°C 6S°6 L6T'8T 1288'ST LT'6E LY6'€T 9LY‘T 90 | 0Z1
L1 19'8 909°88 £76°L 97'S 1LOE 09€ 80 | 0T 00VX00¥
81 9p's 091‘s 68y 8L'T 9z7I‘L 0ST 01T | 0TI
65901 £9'8 $S0°9C S86°CT LL'6L 8V6°66 1801 | 9'0 | 06
787 80°'€ p68°L 8S9°L ey STL'Y 06¥ 80 | 06 00£X00€
(114 80 008Z‘s LET'S 95°0 062 8s1 01 | 06
pLET LTL $S6'ST P61V €0'Y 80€‘El LSY'T 90 | 09
1 $9'6 £8L°8 010‘8 00°0 8 I 80 | 09 007%00¢
9 S8°0 876°S £L8‘S €10 961 €01 01 | 09
1L8C LO°L 9SL°7T €512 98°'1 168'ST 7£6'C 99 | o¢
LEE'Y 8L 86S‘S PLG'L 200'1 LSLTT $6€’1 80 | o€ 001X00¥
14 81’8 £8€°S SLG'Y $0°0 €1y 9L 01 | Of
judqunouy uoljersaq (‘unu) paA[osS SOpPON z uejpl/sqof] wxu
30 # IpoN R 13 an a1 aw], sdV # avd # WOHAII53([ud[qoig

(*SjureIISUOD IPIS ALY dARY swafqoxd [[y)

-unyyrioSqe aypy Supsn ¢ 19s wdqoad yym symsas [edrardury ¢ qeL

A-27

pLIT €6°L £90°LT 608'ST o1y 1SI'21 00T | 90 | 06

29 132 pLY'S L6T'S L80 92T ILT 80 | 06 009%00€
ré 19°€ LEG'E 008‘€ 0£0 LIV 1] 01 | 06

we 00'6 61S°81 066°91 PE0 8I€C 8he 90 | 09

wi 89'€ yee's 8€0°S 870 95S‘T phl 80 | 09 00vX00Z
4! S6'T 6SS‘E 16V°€ 90°0 €LT 144 01T |09

pIL'T LEL 0Eb'9L T0€'ST $8°0 LYI'YT 9zL'T | 90 | ot

9L oL'L 008‘s v8E'S v0'0 €88 06 80 | 0OF 00ZX001
€81 6€°L 0b6'c 899°c LO°0 SSI‘L 677 01 | 0t

judquunduj uon e ("upu) paijos sapoN | z ugjAl/sqof wxu
30 4 dpoN) 1d an a1 L, SdV# | dvE# WONAIISI(Wo[qoid |

(‘spurea3suod Ipis aAy aaey sud|qoad [[V)
-unjra03qe ayy Suisn ¢ 3as wajqoad yjm sypnsaux eapdury p AqEL

A-28

o ® o e o ® o

yuutf azis Jjepipus) 0) anp pajeuiuiia) 1

SI0'ST 1€S°'LT 119°02 LES'LY 868 IpZ'9sT| 000°sT | 90 | 06

w1 pL'T 1ss‘s €0V°s 18°0 LLYI'T X 44 80 | 06 009X00€

LE 0S°C 6TILE Ph9‘e vT0 100 101 01T | 06

1€1 9IL'9 £0E'6T 080°8I 0£'0 £€6°'T €81 90 | 09

LS pI'9 SLYY 001°9 870 6SH'T 6€1 80 | 09 00bX002

I 98'9- 679y eey 000 S I 01T | 09

685°6 Y 0S9vT 091°bT vL'E £EV'E6 1s96 | 970 |og

vL 16 o6Y's 1€0°S 90°0 LYT'T LY 80 | o€ 00ZX001

S 9€'E Svb'e €EEE 20°0 8€7 Ly 01 | O€

juaquinouj uoneIAd() (*uyur) paAjosS S3pPON Z uejA/sqof umxu

Jo # 9poN) 12 an a1 aung, sdV # | dvd# ToNdiI953(] WAqoId

(*SpUIBI)ISUOD JIPIS AL dARY swa[qoad [[¥)

“unyriofpe ayy Suisn ¢ 3os wafqoad ym symsax [edrdury -G IqEL

A-29

Appendix B

Class Scheduling for Navy Training Schools

Technical Report 96—CSE—6

Class Scheduling Algorithms for Navy Training Schools

by

A. Aptel
A. Jayasuriyal
J. Kennington!
I. Krass?

R. Mohamed?
S. Sorensen?
and
J. Whitler!

1CSE Department, SMU, Dallas, TX 75275-0122
ZDefense Manpower Data Center, Monterey, CA 93490—2453
3SABRE Decision Technologies, Dallas/Fort Worth Airport, TX 75261-9616

4Navy Personnel Research & Development Center, San Diego, CA 92152—6800

Department of Computer Science and Engineering
Southern Methodist University
Dallas, TX 75275—0122

June 1996

Abstract

The problem of developing good schedules for Navy C—Schools has been modeled as a
combinatorial optimization problem. The only complicating feature of the problem is that
classes must be grouped together into sequences known as pipelines. An ideal schedule will
have all classes in a pipeline scheduled in consecutive weeks. The objective is to eliminate the
nonproductive time spent by sailors at C—Schools who are waiting for the next class in a pipe-
line. In this investigation, five algorithms were specialized for this problem and empirically
analyzed on a set of actual scheduling problems. The algorithms evaluated include simulated
annealing, a greedy heuristic, tabu search, a genetic algorithm, and evolutionary program-
ming. In empirical testing the greedy heuristic was found to be best for this application.

In addition, an implicit enumeration procedure for this problem was also developed.
The implicit enumeration algorithm uses the output from the greedy algorithm as the initial
upper bound and develops a lower bound based on the problem input data. If the bounds are
equal, then an optimal schedule has been found; otherwise, an implicit enumeration proce-
dure is initiated which if allowed to run long enough will eventually find an optimal schedule.
On five of the six test problems, a provable optimum was obtained. The sixth problem remains
unsolved.

The best ideas for Navy C—School scheduling were extended for basic training courses
which are offered in Navy A —Schools. In empirical tests, we found that our heuristicalgorithm

worked very well on the A—School test problems.

Acknowledgment

This work was supported by the Navy Personnel Research & Development Center under the auspices of the U. S.
Army Research Office Scientific Services Program administered by Battelle (Delivery Order 1110, Contract
Number DAAIL03-91-C-0034) and by the Office of Naval Research under Contract Number NO0014-95-1-0645.

B-3

I. INTRODUCTION

The Navy currently has approximately 400,000 sailors each of whom is assigned to a job
billet for a specific tour of duty lasting from two to five years. After the tour is completed, a
sailor is assigned to a new billet for another tour of duty. Sailors assigned to sea billets are
usually rotated to shore billets and vice versa. Each month, the Navy assigns thousands of new
recruits and rotating sailors to vacant billets (jobs). The assignments are made by some 200
detailers within the Personnel Assignment Division of the Bureau of Navy Personnel. Enlisted
personnel assignment is a complex process which often involves trade—offs among several
conflicting policies. An excellent description of the Navy’s system may be found in Blanco and
Hillery [1994].

Before assuming a new assignment, a sailor frequently is required to complete one or
more Navy training classes. Experienced personnel attend advanced skills training courses
while new recruits take a set of basic courses. The advanced courses are offered by Navy C—
Schools and the basic courses are offered by Navy A—Schools. Multiple offerings of over 2000
different courses must be taught each year with a course lasting from one week to over six
months. The Navy’s annual budget for training exceeds $1.3 billion.

Based on the forecast demand for courses, the C—School and A—School managers de-
velop a schedule of class offerings for use by the detailers. Until recently these schedules were
prepared manually by personnel at each of the Schools. The creation of an optimal schedule
for either a C—School or an A—School is a difficult combinatorial optimization problem. The
objective of this study is to develop and empirically evaluate algorithms for creating good class

schedules for both types of Navy Schools.

B-4

II. NAVY C-SCHOOLS

The assignment to a new billet may require that the sailor update his/her skills which is
accomplished by taking courses in the Skill Progression Training Program. These courses are
taught at several campuses in the continental U.S.A. with the largest campuses being at the
Fleet Training Center in Norfolk and at the Service School Command Headquarters in San
Diego. The organizations which offer these courses are called C—Schools. During FY95 these
C—Schools offered several thousand different courses to approximately 60,000 enlisted per-
sonnel.

As the military draw down proceeds and budgets for skills training is decreased, it is
imperative that these Schools operate as efficiently as possible. An important problem faced
by the management of these schools is the development of a good class schedule. In this section
we describe the pipeline scheduling problem, present a set of algorithms for this problem,

provide an empirical evaluation of our algorithms, and finally give our recommendation for

solving this problem.

2.1 The Pipeline Scheduling Problem

The Service School Command at the San Diego Naval Station offers four courses in the
area of maintenance of electronic communication equipment for the FFG—7 ship class. A

sailor who successfully completes all four courses is called a Small Combatant Communications

Subsystem Technician. The courses are as follows:

(1) HFSYS - (High Frequency Systems — 12 weeks),

(i) WSC3 — (AN/WSC-3 Communications Sets Maintenance — 12 weeks),

(iii) NAVMACS - (Organization Level Maintenance on the Navy Modular Automated Com-

B-5

munications System — 12 weeks), and
(iv) VRC46 — (AN/VRC—46 Radio/Transmitter Set Maintenance — 2 weeks).

During 1995 this School offered HFSYS and VRC46 eight times, WSC3 nine times, and
NAVMACS sixteen times. A class, as distinguished from a course, is a specific offering (con-
vening date) of a course. Hence, during the one year planning horizon, there will be eight
classes of courses HFSYS and VRC46, nine classes of WSC3, and sixteen classes of NAV-
MACS. Since a sailor can only take one class at a time, a sailor who needs all four courses will
be assigned to this campus for a minimum of thirty eight weeks.

This School runs two shifts (a day shift and an evening shift) for courses HFSYS, WSC3,
and NAVMACS, and a day shift only for VRC46. Many sailors come for all four courses and
proceed through four classes grouped together into what is known as a pipeline or pipe. That
is, a pipe is a sequence of classes that are scheduled so that a sailor can take all four courses
before departing for the next assignment. The four courses in a pipe can be taken in any order
and ideally they will be offered back—to—back.

Classes are generally team taught and there may be several teams available to teach the
same course. When there are multiple teams, they teach during different shifts (either the day
shift, the evening shift, or the night shift). Hence, WSC3 shift 1 and WSC3 shift 2 refer to the
same course (WSC3) being taught by different teams at different times of the day. For this
study the terms team and shift will be used interchangeably.

Since many courses have multiple instrﬁctors, it is sometimes possible for a given team
to begin a new class before a previous class is finished. The minimum time required between
the starting times of two classes is called the offset. For example, suppose course A lasting 10
weeks has a two week offset. Then classes could begin in weeks one, three, five, seven, et cet-

era. This partial schedule is illustrated in Figure 1.

B-6

Figure 1. About Here

Ideally the classes in a pipe will be offered back—to—back so that a sailor has no idle
weeks at the C—School. A period of one or more weeks in a pipe in which no class is offered is
called agap in the pipe. Pipe 1illustrated in Figure 2 has no gaps while pipe 2 has gaps totaling

four weeks. The pipes in a perfect schedule will have no gaps.

Figure 2. About Here

These ideas are further illustrated by examining the problem data for the FFG—~7 prob-
lem presented in Table 1. Line 1 indicates that this schedule is for the fiscal year 1995 (1 Octo-
ber 1994 — 30 September 1995), and is a one year schedule. A one year schedule corresponds
to 50 weeks with a two week break for Christmas. A two year schedule corresponds to 100

weeks and all schedules are for at most two years.

Table 1. About Here

Line 3 indicates that the schedule is composed of eight pipes each of which has four
courses. The names of the four courses are given on lines 4, 8, 12, and 16. Course A lasts 12
weeks and there are two teams (shifts) available to teach it. The first shift will offer this course
four times during the year with an offset equal to the course length. Thatis, the second offering
of course A using shift 1 cannot begin until the completion of the first offering. For course B,
shift 1 will offer five classes during the year while shift 2 will only offer four. This gives a total of
nine class offerings for the eight pipes. Hence, one of the classes will not appear in any pipe.
An offset of eight for course B shift 1indicates that if a class begins in week t another class could

begininweek t+8. Hence, in weekst+8,t+9,t+10, and t+11 there would be two classes being

B-7

taught by shift 1. For course C there will be a total of 16 classes of which only eight will appear
in pipes.

Based upon its characteristics, a schedule is assigned a nonnegative score. Penalty points
are assessed for undesirable characteristics with a perfect schedule having a score of zero.
Gaps in pipes result in penalty points equal to the total number of weeks in the gaps. A class
which extends beyond the planning period is assessed penalty points equal to the number of
weeks that it extends beyond the planning horizon. For example a class that was completed at
the end of week 56 when the planning horizon is 50 weeks would be assessed 2 penalty of six
points. Each pipe is assigned a minimum target week for its start date. A pipe is assessed one
penalty point for each week of time that it begins prior to its minimum target week. Pipes may
begin on or after the target week with no penalty.

The minimum pipeline target for pipe p (Ep) is based on the number of weeks in the plan-
ning horizon (W) and the number of pipes (P) in the schedule. This relationship is Ep =
L(p—1)W/(2P)] + 1. ForFFG—7, the pipeline targets for each of the eight pipelinesare 1,4,7,
10, 13, 16, 19, and 22. A feasible schedule having a score of 19 appears in Figure 3. The eight
pipes are denoted by the lower case letters a, b, ...,h. Pipe a consists of the classes Ala, Dlc,
C1d, B1d. The 0’s in Figure 3 refer to classes which do not appear in any pipe. The detailed
calculations of this score may be found in Tables 2 and 3. The six, three, and ten in Table 2 are

due to the three classes which extend beyond the 50 week planning horizon.

Figure 3, Table 2, and Table 3. About Here

2.2 Heuristic Algorithms for the Pipeline Scheduling Problem

Heuristic procedures for discrete optimization problems are usually based upon one of
three ideas: (i) greedy heuristics, (i) interchange heuristics, or (iii) truncated exponential pro-

cedures. This section presents, a greedy heuristic and several interchange heuristics which

B-8

have been specialized for the pipeline scheduling problem. The interchange heuristics include
simulated annealing, tabu search, a genetic algorithm, and evolutionary programming. Some
general information about all of these techniques can be found in Parker and Rardin [1988],

and Nemhauser and Wolsey [1988, 1989].

2.2.1 Simulated Annealing

The term simulated annealing comes from the thermodynamics analogy with the way
that metals cool or anneal (see Press, Flannery, Teukolsky, and Vetterling [1989]). Ifa liquid
metal is cooled slowly, then the atoms form a crystal which has a minimum energy state. If a
metal is cooled too quickly or quenched, then it may end up in a polycrystalline state having a
higher energy level. The idea behind simulated annealing is to use slow cooling in an attempt
to obtain a low energy state (objective value).

A software implementation of the simulated annealing algorithm specialized for the
pipeline scheduling problem is called Pipeline Assistant. It begins with a set of equally spaced
start times for each class and a random assignment of classes to pipes. This starting schedule
may violate both the offset restrictions and the restriction that a sailor cannot be in two classes
simultaneously. A verylarge penalty is assessed for these constraint violations. Ateachitera-
tion a neighboring schedule is generated at random. Generating a neighbor will involve either
moving a single class one week earlier or one week later, or switching a pair of classes of the
same course between two pipes.

If the neighbor has a lower score than the current schedule, then the neighbor becomes
the current schedule and the process is repeated. If the neighbor’s score is worse than that of
the current schedule, then a random number is used to determine if the neighbor becomes the
current schedule. Suppose the current schedule has a score of S¢ and the neighbor has a score
of Spwith S; < S,. Let R be a random number from a Uniform [0,1] distribution, andlet Tbe a
parameter known as the temperature. If R < [1 — (S, — S¢) / T}, then the neighbor becomes

the new current schedule. Initially T is set to 5% of the score of the initial schedule. As the

B-9

iterations proceed, the temperature is systematically lowered by replacing T with 0.8T. The
procedure searches for some finite number of iterations and retains the best schedule found
during the search. In Pipeline Assistant this is repeated three times and these three schedules

are reported to the user. There is no guarantee that any of these schedules will be feasible.

2.2.2 A Greedy Heuristic With Local Improvements

The greedy heuristic develops a schedule similar to the way a human would construct a
schedule manually. Initially the courses are given a priority ranking. For a four course pipe-
line, course A is given priority 1, course B is given priority 2, and so forth. The pipes all begin at
their minimum target times and are constructed one class at a time. At each iteration, the
shortest incomplete pipe is selected for a class assignment. The first available class associated
with the unassigned course having highest priority is assigned to this pipe at the earliest pos-
sible time. This strategy attempts to construct pipes having no gaps. After all pipes have been
constructed, the other classes are scheduled one at a time at the earliest time possible. At this
stage a feasible schedule has been developed.

Each pipe having a gap of at least one week is examined in an attempt to start the pipe
later and thus reduce the gap. Finally, for those pipes in which the last class begins after the
planning horizon, an attempt is made to move this class to the first position in the pipe. Fewer
penalty points will be incurred for beginning this pipe prior toits target week than are currently
being assessed for beginning after the planning horizon. This results in one candidate sched-
ule.

Other candidate schedules are obtained by changing the course priorities. The greedy
algorithm tries a large number of possible priorities and saves the best schedule found. For a
problem having n courses, min(10K, n!) possible schedules will be developed. Some theoreti-
cal results concerning the optimality of greedy algorithms on ordering problems may be found

in Dechter and Dechter [1989].

B-10

2.2.3 The Tabu Search Algorithm

Tabu search is a heuristic technique that is based upon selected concepts from the field of
artificial intelligence. Itis a flexible method for guiding a search over the space of solutions in
an attempt to discover a high quality solution. Tabu search uses three types of rules that at-
tempt to prevent the search from being trapped at an inferior local optimum.

The first set of rules guides the local search. Letw be a given number of weeks that a class
is allowed to move, either forward or backward. For a given schedule x and a given class c, the
neighborhood N(x,c), is defined as the set of all schedules formed from x by moving c at most w
weeks. A neighborhood N(x,c) is said to be tabu if class ¢ has been moved during the most
recent q iterations. The systematic use of this rule provides the tabu search with a short term
memory that prevents the local search from revisiting the same neighborhood. The “most im-
proving” selection rule would select the best move over all N(x,¢) for all classes ¢. For this ap-
plication the most improving rule is numerically expensive and requires the evaluation of each
move generated by each (course, shift, class, week) combination. In our tabu search proce-
dure, we use a hybrid of the most improving rule and a Monte Carlo method. Specifically, the
best move from h randomly generated neighbors is selected.

The second set of rules diversify the search, by moving the local search into a new region
of the solution space. For a given schedule x, the new region is reached by swapping a pair of
classes of the same course between two pipes. This triple (pipe 1, pipe 2, course) is the best
swap among m randomly generated candidates. To prevent the search from cycling back to the
same schedule x, once a swap is executed it will be tabu for the next niterations. This is usually
referred to as intermediate memory.

The third set of rules define the aspiration criteria, which may be viewed as a relaxation
of the first two rules. Since the potential moves using the above rules are generated randomly,
it is possible that a tabu move will be produced. If the resulting score is an improvement over

the best schedule found so far, then this tabu move is accepted.

B-11

Given a schedule x, the procedure applies the first set of rules for fiterations. This is fol-
lowed by one application of the second rule (a pipe swap). Since an infeasible solution may be
developed, as with simulated annealing, a very Jarge penalty is assessed for violating feasibility
restrictions. We begin the tabu search with the first feasible solution developed by the greedy
heuristic. Additional information about this general approach may be found in Glover [1989,

19902, 1990b] and Glover and Laguna [1993].

2.2.4 The Genetic Algorithm

The genetic algorithm begins with a schedule generated by the initial application of the
greedy heuristic. At the start of the algorithm, this schedule is the lone member of a pool of
schedules that will be built up and modified from iteration to iteration. Each schedule in the
pool is evaluated to determine how well it satisfies the problem requirements and is assigned a
score based upon that evaluation.

The algorithm uses two basic operations, mutation and cross—over. Given a schedule, a
mutation replaces a random number of randomly selected classes with randomly selected
classes of the corresponding course and shift. A cross—over is slightly more complicated and
involves combining two schedules. Given two schedules, randomly select two points for inter-
change. The two points are selected so that they occur at pipeline boundaries. Place pipes in
the first schedule prior to the first interchange point and pipes in the second schedule between
the first interchange point and the second interchange point into the result schedule. Then fill
out the result schedule with pipes (if any) and other classes from the first schedule after the
second interchange point.

An iteration of the genetic algorithm proceeds as follows:

1. Randomly select a given proportion of the pool to be subjected to the mutation operation. (Se-
lected schedules remain in the pool.) Add the schedule resulting from the mutation operation
to the pool. The random selection of schedules to mutate is biased according to the schedule

score. Better schedules are more likely to be mutated.

B-12

2. Randomly select a given proportion of the pool to be subjected to the cross—over operation.
(As with mutation, selected schedules remain in the pool.) Add the schedule resulting from the
cross—over operation to the pool. The random selection of schedules to cross—over is also
biased according to the schedule score. Better schedules are more likely to be selected for the
Cross—over operation.

3. Reduce the pool to its maximum allowable size by randomly removing schedules. (This is not
necessary in the first few iterations.) The random selection of schedules to remove is biased
according to the schedule score. Better schedules are less likely to be removed, and the best

schedule is never removed.

In any particular iteration, schedules may be generated that violate one or more of the
problem restrictions. In addition to those stated in the section on simulated annealing (the
offset and the class overlap restrictions), the limit on the number of classes of a particular
course and shift may be violated. Very large penalties for these constraint violations are added
to schedule scores of the infeasible schedules. These infeasible schedules are added to the
pool when they are created; however, they are much more likely to be removed from the pool
when its size is reduced at the end of each iteration.

The algorithm repeats the process for a specified number of iterations and then reports

the best schedule found. Additional information about this general approach may be found in

Winston [1992].

2.2.5 The Evolutionary Programming Algorithm

Evolutionary programming is a procedure developed by D. B. Fogel of ORINCON Cor-
poration which also uses ideas from biology to produce heuristic algorithms for a variety of dis-
crete optimization problems. For example, an algorithm for the traveling salesman problem
can be found in Fogel [1988]; a technique for solving linear systems may be found in Fogel and
Atmar [1990]; and a technique for training neural networks can be found in Fogel, Fogel, and
Porto [1990]. J. P. Lemoine [1994] adapted evolutionary programming for the pipeline sched-

uling problem and developed a software implementation.

B-13

Using the greedy algorithm to obtain starting schedules, Lemoine develops an initial set
of parent schedules which are then perturbed by adding random gaps. The scores for each par-
ent schedule are used in a competition based upon random numbers, that determines which
parents survive to become the basis for the next generation. The survivors create progeny (a
new generation of schedules) and the process repeats. The progeny are produced using two
methods. One routine randomly adds and removes gaps to a schedule. The other randomly
switches positions of two classes in a randomly selected pipe.

For this application, a generation begins with 20 schedules. A competition reduces these
20 schedules down to four survivors. Each of these four survivors produces five progeny result-
ingin a new generation of 20 schedules. Lemoine found that good solutions could generally be

obtained in about ten generations.

2.2.6 Empirical Analysis

Six actual problems from various C—Schools are used in the empirical tests. The most
difficult problem (PAS_2) has ten courses and eight pipelines (see Table 4). All problems have
a one year planning horizon (50 weeks) and no course is taught by more than three shifts. The
course length varies from one to 31 weeks.

Since Pipeline Assistant is written in Turbo Pascal and uses routines from Microsoft Win-
dows, the first test was conducted on a 486 —based PC. A comparison of Pipeline Assistant with
a C language implementation of the greedy algorithm may be found in Table 4. The times are
wall clock times and are rounded to the nearest second. For every problem, the greedy imple-
mentation produced a better solution in less time. Since Pipeline Assistant uses a random
number seed based upon the system clock, additional runs yield different solutions. In five
additional runs with FFG—7, Pipeline Assistant produced schedules having the following
scores: 27, 34, 28, 26, and 20.

B-14

Table 4. About Here

An empirical analysis of C language implementations of the other algorithms may be
found in Table 5. Reported times are user times (estimates cpu time) on a DecStation 5000/240.
For each of the interchange heuristics, the initial solution, the final solution, and the total time
isreported. Both the tabu search and the genetic algorithm apply an elementary version of the
greedy method to obtain initial schedules. The evolutionary programming algorithm applies a
more advanced version of the greedy algorithm to obtain the initial schedule. The greedy algo-
rithm produced the best schedule for each of the six problems and was always faster than tabu
search and the genetic algorithm. The evolutionary programming code ran each problem in
approximately 17 seconds regardless of the problem size. On PAS_2 the evolutionary pro-
gramming implementation ran faster than the greedy implementation, but failed to produce as
good a solution.

The evolutionary programming software begins by generating 20 schedules using the
greedy method with local improvement. This is followed by 15 iterations of the evolutionary
programming algorithm. The score of the best of the greedy schedules is reported in the row
entitled initial score. Notice that the computational machinery of evolutionary programming
never discovered a schedule that was superior to that produced by the 20 trials of the greedy
algorithm. Hence, the best solution obtained by the evolutionary programming software was

obtained in the first second by the greedy heuristic.

Table 5. About Here

B-15

2.3 An Implicit Enumeration Algorithm for the Pipeline Scheduling Problem

In this Section we present an enumeration algorithm for the pipeline scheduling prob-
lem. A lower bound is developed from an analysis of the input data and feasible schedules
(upper bounds) are generated one pipe at a time using a specialized enumeration strategy.
Hence, a partial schedule whose score is greater than or equal to the incumbent (best schedule
found so far) can be fathomed (diécarded). The hope is that a good incumbent will permit the

algorithm to fathom most of the possible schedules.

2.3.1 The Lower Bound

Suppose there are P pipes and suppose the minimum duration of each of these pipes
is D weeks. That is, if a pipe has all classes scheduled back—to—back, then the pipe lasts
D weeks. Let Ty, denote the target start date for pipe p. If pipe p begins on or after week
Tp there is no penalty. Let H denote the planning horizon (either 50 or 100 weeks). If a
pipe lasts through week H+t, then the score for this pipe is at least t. Therefore, L =
max[0,H— (T1+D - 1)] + max[0,H—- (T, + D~)]+ .. + max[0,H—- (Tp + D —

1)] is a lower bound for any feasible schedule.

2.3.2 Complete Enumeration

In order to develop an implicit enumeration algorithm, one needs a technique to
completely enumerate all possible solutions since in the worst case, the algorithm will re-
quire a complete enumeration of the solution space. Consider a problem having three
courses A, B, C and a single pipe. There are 3! = 6 possible schedules given by the per-
mutations (ABC, ACB, BAC, BCA, CAB, CBA). That is, given a permutation, convening
dates for the classes are determined by the earliest possible time for each class in the per-
mutation. For the permutation BAC, class B is convened at the earliest possible week, the

target week for the pipe. Class A begins as soon as B is completed followed by C. If the

B-16

schedule has three courses and two pipes, then there are (3!)(3!) = 36 possible schedules as
illustrated in Figure 4. In general for a schedule having C courses and P pipes there will be

(C)P possible schedules formed in this way.

Figure 4. About Here

Note that the tree in Figure 4 has 6+36=42 nodes. The first six nodes represent the
first pipe and corresponding priorities for the three courses, whereas the next level of nodes
represent the second pipe and corresponding priorities for its courses. In general a tree
will have (C!) + (C!)2 + (C!)3 + ... + (C!)P nodes. A very compact algorithm based upon
recursion has been developed to generate these nodes. A node is defined by the pair (Z,p)
where p denotes the pipe number and Z is a P by C matrix where Zp; denotes the course in
the ith position of pipe p. The complete enumeration algorithm is given as follows:
algorithm complete enumeration(P, C)

Inputs: P — denotes the number of pipes
C — denotes the number of courses
Output: A set of (C!)? matrices Z corresponding to all of the permutations
begin
forp=1toPdo fori=1toCdo Zpy + i
perm(1, 1, Z);

end

B-17

procedure perm(p, i, Z)
Inputs: p — denotes the current pipe
i — denotes the current course position
Output: A set of Z matrices
begin
ifi < Cthen
ifi < P then perm(p+1, 1, Z);
else write Z;
else
forj=1ito Cdo
switch(p, 1, j, Z);
perm(p, i, Z);
switch(p, 1, j, Z);
end
end

end

procedure switch(p, i, j, Z)

begin

t—2Zp; Zpi+Zpi;, Zpi+t

end

The P row C column matrix Z will correspond to one permutation of the P pipes. Hence, the

first six permutations illustrated in Figure 4 correspond to

123 123 123 123 123 123
123 132 213 231 312 321

B-18

2.3.3 Construction of a Pipe
For a pipe with a given permutation (i. e. Z), the convening dates for the classes in

the pipe are determined sequentially. Given a partial schedule (i. e., some classes have
been scheduled) and a new class to be scheduled, we need an efficient method to deter-
mine the earliest possible convening date for this new class. Since the C—School courses
are generally team taught, they frequently have multiple offerings of the same course being
offered simultaneously, as long as the starting dates maintain the offset. Suppose course A
having a two week offset currently has three offerings scheduled as illustrated in Figure 5.
Then weeks 8, 12, 15, and 20 are convening dates which we wish to consider. That is, we
consider the earliest possible starting time and the convening times plus the offset for the
other three classes. Let y denote a possible trial value for class 4. If y is in the open inter-
val (10—2,10+2), then y will violate the offset restriction for class 1. Likewise, if y is in the
open interval (13—2, 13+2), then y will violate the offset restriction for class 2. If A; is the
convening time for class i with an offset of a, then y can not be in the open interval (A; —
0, Aj + o) for any i. These ideas result in the following assignment algorithm:
algorithm assign(n, A, o, B, V)
Inputs: n — denotes the number of currently scheduled classes for this course

Aj — denotes the convening week for class i

a — denotes the offset

f — denotes an earliest possible convening week
Output: y — convening week for class n+1
Assumption: A;j < A3 <..< A,
begin

Y+ B
fori=1tondo ifA;—~ o <y <A+ atheny+— max(y, A; + a);

end

B-19

Given a permutation of pipes and classes defined by Z, assign can be used to construct a

schedule. That is, assign determines the convening time for each class in Z.

2.3.4 Implicit Enumeration Algorithm
Given a permutation matrix Z and a p < B, a partial schedule can be developed by
applying assign sequentially to the first p pipes. Let score(Z,p) denote the score of the par-
tial schedule defined by Z and p. Since score(Z,p) < score(Z,p+1) then score(Z,p) is a
lower bound on score(Z,P). Combining this notion with the complete enumeration algo-
rithm results in the following implicit enumeration algorithm:
algorithm implicit enumeration(P, C)
Inputs: P — denotes the number of pipes
C — denotes the number of courses

Output: v — denotes the score of the best solution found
begin

for p=1toPdo for i=1toCdo Zpi+—i;

let v denote the score of the solution found using the greedy heuristic;

let L denote a lower bound based on the analysis given in Section 2.3.1;

if v > L then enumerate(l, 1, Z, v);

write “the best schedule found has a score of v’

end

B~-20

procedure enumerate(p, i, Z, v)

Inputs: p — denotes the current pipe

|
1 — denotes the current course position
Z — denotes a permutation
v — denotes the current best solution
o
begin
ifi < Cthen
if p < P then
®
if score(Z,p) < v then enumerate(p+1, 1, Z, v);
else if score(Z,P) < v then v + score(Z,P);
end
®
else
forj=1itoCdo
switch(p, i, j, Z);
®
enumerate(p, i, Z, v);
switch(p, i, j, Z);
end
e
end
end
° Of course, one must also save the schedule whenever visupdated. The hope is that the initial
solution (upper bound) will be small and that the lower bounds will be large.
° 2.3.5 Empirical Analysis
The six test problems were run using a Clanguage implementation on a 275 MHz Alpha
based DecStation and the results are summarized in Table 6. For the first four problems, the
° greedy heuristic found a solution whose value was equal to the lower bound; hence, no enumer-
ation was needed. A provable optimum for the FFG—7 problem was obtained after approxi-

‘0 B-21

mately one—half hour of computer time. On PAS_2 the system was terminated after it ex-
amined three million nodes which took approximately one hour of cpu time. At termination,
no improvement over the greedy heuristic had been made and the gap between the upper and

lower bounds was approximately 25%.

Table 6. About Here

2.3.6 Recommendation

Based on our empirical analysis, we recommend an algorithm that uses three proce-
dures: (i) the greedy heuristic, (ii) the lower bound, and (iii) the implicit enumeration algo-
rithm. The greedy heuristic has consistently produced fairly good schedules which could be
used by the client. The lower bound should also be produced and reported to the user. If the
gap between the upper and lower bound islarge, then the user should be given the option torun
the implicit enumeration algorithm for some given time, to determine if the gap can be closed.
A finite termination criteria should be incorporated to prevent excessive run time in the im-

plicit enumeration algorithm.

B-22

III. NAVY A-SCHOOLS

The basic courses for new recruits are offered at campuses known as A—Schools. The
largest are located at Norfolk, San Diego, and Great Lakes, and during FY96 over 80,000 sail-
ors took at least one A—School course. The managers of each A—School is responsible for
planning the class schedule for their School. In this Section we describe the A—School class
scheduling problem, we present a greedy heuristic for this problem, and we provide an empiri-

cal evaluation of our algorithm.

3.1 Description of the Problem

A Navy A —School will offer a variety of training courses during a one year planning peri-
od. Some courses last only a few days while others may involve over one hundred days of
instruction. Some days a class may meet in a large lecture hall and other days the class may be
divided into smaller groups. These smaller groups will meet in different rooms with individual
instructors. Hence, on day one, the School may need a large lecture hall and one instructor but
on day two, the School may need three small lecture rooms and three instructors. The instruc-
tors are interchangeable so that an instructor can teach either the whole group in a large lec-
ture hall or the smaller groups. In addition, some classes may require special equipment such
as calculators or personal computers. The managers of the A—Schools are responsible for de-
veloping a class schedule that requires the minimum number of instructors subject to resource
constraints on lecture halls, seminar rooms, laboratory space, and equipment.

The input data used to describe the A—School class scheduling problem is given below:
Leti — denote a course (i= 1,...,n)

Let D; - denotethe duration of course iindays. (Thiscan vary from a few days towell over
one hundred days.)

Let O; - denote the number of times course i will be offered during the year. All offerings

B-23

could convene on the same day or they could be dispersed throughout the year. Dis
persal usually results in the requirement of fewer instructors on the busiest day.

LetLy — denote the number of instructors needed by course i on day d. This can vary from
a minimum of one to a maximum of four.

Let Cjig - denote the consumption of resource jbycourseiondayd. Theseare usuallyOor1
depending upon whether a particular type room is needed. .

Let Rjy — denote the number of resources of type j available on calendar day t. Usually the
consumption is a small integer corresponding to the number of rooms of a given
type available at the School.

The decision variables are convening dates for the O3 + Oz + ... + Oy classes to be of-
fered. The objective istoselect convening dates that require the least number of instructors on
the busiest day of the year. The problem may be further complicated by the imposition of con-
vening day restrictions. For example, some A—Schools require that a certain course always
begin on a Monday. Some may restrict the number of offerings of a given course in a given

month.

3.2 The Greedy Algorithm

Consider an A—School which offers O; + O3 + ... + Op = m classes during the year.
Suppose this School is open Monday through Friday except for thirteen holidays. For a non—
leap year, this results in 356 — 104 — 13 = 248 possible convening days for each of m classes.
Hence, there are 248™ possible schedules.

Based upon the successful implementation of the greedy algorithm for C—Schools, we
developed a similar approach for the A—School scheduling problem. Consider a School that
offers three courses, A, B, and C. We first develop the 6 permutations for these courses (ABC,
ACB, BAC, BCA, CAB, CBA). Suppose that A is offered twice, B once, and C three times.
Using a simple rule to spread the offerings of each course throughout the year, we obtain the

following possible sequences:

B-24

Sequence Number Class Order
1 Al-B1-C1-C2-A2-C3
2 Al-A2-C1-C2-B1-C3
3 B1-A1-C1-A2-C2-C3
4 B1-Ci1-A1-C2-A2-C3
5 Cl1-Al1-B1-C2-A2-C3
6 Cl1-B1-A1-C2-A2-C3

For sequence 1, the greedy algorithm will schedule the first offering of A followed by the first
offering of B. This is followed by two offerings of course C, the second offering of A, and the
final offering of C.

The greedy algorithm initializes the day index t to 1 and assigns the first class in the se-
quence a convening day of t. For sequence 1, Al convenes at day 1. Next it attempts to assign
the second class in the sequence a convening day of t. If a resource violation occurs, then t is
incremented by one and it tries again. Once the second class is scheduled, then it proceeds to
the third. This process continues until either all classes are scheduled within the year (a feasi-
ble schedule) or it fails to find a feasible schedule. If a feasible schedule is obtained, then an
upper bound on the number of instructors needed has been established. Suppose this process
results in a feasible schedule using 50 instructors on the busiest day. This first schedule found
dées not attempt to minimize the number of instructors and the algorithm is concerned only
with feasibility. In the next stage the number of instructors is systematically reduced using a
binary search on the interval [1,50] and the algorithm proceeds to find a feasible schedule with
this sequence and the minimum number of instructors. This strategy is repeated with the rest

of the sequences and the best of the best is saved.

B-25

3.2 Empirical Analysis

Seven problems were used in our empirical tests. The number of courses varies from one
to sixand the number of resource restrictions varies from one to nine. The course length varies
from ten days to over one hundred days and the number of offerings of a single course during

the year varies from one to sixty. The characteristics of these test problems may be found in

Table 7.

Table 7. About Here

SABRE Decision Technologies has developed a PCbased system to obtain schedules for
this problem. The system is called NCSS (Navy Class Scheduling System) and uses simulated
annealing in an attempt to obtain a good schedule. Table 8 summarizes our results using both
simulated annealing and the greedy heuristic on the seven test problems. On six of the prob-
lems, greedy provided a better answer and on the seventh there was a tie. Since NCSS is
written in Visual Basic, it was run on a 50 MHz 486 based PC and each run took approximately
15 minutes. The greedy code is written in C and those runs were made on a 275 MHz Alpha
based DecStation and never required more than a few seconds.. These results are consistent

with those obtained previously with the pipeline scheduling problem.

Table 8. About Here

B-26

IV. SUMMARY AND CONCLUSIONS

Five computer codes designed to obtain good solutions to the Navy’s C—School schedul-
ing problem involving pipelines have been tested. The five codes are based upon the following
algorithms: |

(i) simulated annealing,

(ii) a greedy heuristic,

(iii) tabu search,

(iv) a genetic algorithm, and

(v) evolutionary programming.
In empirical tests with these five codes on six actual C—School scheduling problems, the
greedy algorithm produced the best schedules. Not only did it produce the best schedules, its
computational time was least for all runs except for problem PAS_2. For this problem, the evo-
lutionary programming code terminated after 18 seconds while the greedy algorithm ran for
about one minute.

The four interchange heuristics (simulated annealing, tabu search, the genetic algo-
rithm, and evolutionary programming) all involve several tuning parameters (initial tempera-
ture, iterations before a temperature change, number of iterations before the local search is
abandoned and a new region is explored, the mutation and cross—over rules used, the number
of schedules retained in a generation, the number of generations computed, et cetera). These
tuning parameters were set by the authors of each code and were not modified in our experi-
ments. However, it is well known that modification of the tuning parameters in any of these
codes may produce different results. The only tuning parameter in the greedy algorithm is the
maximum number of schedules to be developed before termination. This parameter which

was set to 10,000 in these runs could probably be set to a much smaller value withno deleteri-

B-27

ous effect on the final solution. In the empirical analysis, the best solution for the problem
PAS_2was discovered at iteration 1746. It is also possible that all of the interchange heuristics
could benefit by first running the greedy heuristic to completion followed by the interchange
search.

We also developed an implicit enumeration algorithm for the pipeline scheduling prob-
lem. At the expense of substantial computational time, this algorithm discovered the optimal
solution for the FFG—7 problem. None of the heuristic methods were able to find this optimal
solution.

The ideas used in the successful greedy heuristic for the pipeline scheduling problem
were extended for the A—School scheduling problem. In empirical tests, the greedy heuristic
performed better than an implementation of simulated annealing on a set of test problems.
Based on these studies, we conclude that greedy type algorithms are ideally suited for class

scheduling problem for Navy training schools.

B-28

V. REFERENCES

Blanco, T. A. and R. C. Hillery [1994], “A Sea Story: Implementing the Navy’s Personnel
Assignment System,” Operations Research, 42, 5, 814—822.

Dechter, A. and R. Dechter [1989], “On the Greedy Solution of Ordering Problems,”
ORSA Journal on Computing, 1, 3, 181-189.

Fogel, D. B. [1988], “An Evolutionary Approach to the Traveling Salesman Problem,” Bio-
logical Cybernetics, 60, 139—144.

Fogel, D. B. and J. W. Atmar [1990], “Comparing Genetic Operators with Gaussian Muta-
tions in Simulated Evolutionary Processes Using Linear Systems,” Biological Cyber-
netics, 63, 111-114.

Fogel, D. B., L. JI. Fogel, and W. W. Porto [1990], “Evolving Neural Networks,” Biological
Cybernetics, 63, 487—-493.

Glover, F. [1989], “Tabu Search, Part I,” ORSA Journal on Computing, 1, 3, 190—206.
Glover, F. [1990a], “Tabu Search, Part II,” ORSA Journal on Computing, 2, 1, 4—32.
Glover, F. [1990b], “Tabu Search, A Tutorial,” Interfaces, 20, 4, 74—94.

Glover, F. and M. Laguna [1993], “Chapter 3 Tabu Search,” in Modern Heuristic Tech-
niques for Combinatorial Problems, Editor Collin Reeves, John Wiley & Sons, Inc.,
New York.

Lemoine, J. P. [1994], “Application of Evolutionary Programming to the Pipeline Schedul-
ing Problem,” unnumbered technical report, Navy Personnel Research and Develop-
ment Center, San Diego, CA.

Nemhauser, G. L. and L. A. Wolsey [1988], Integer and Combinatorial Optimization, John
Wiley and Sons, New York.

Nembhauser, G. L. and L. A. Wolsey [1989], “Chapter VI Integer Programming,” in Hand-
books in Operations Research and Management Science: Volume 1 Optimization,
Editors G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, North—Holland,
New York.

Parker, R. G. and R. L. Rardin [1988], Discrete Optimization, Academic Press, New York.

Press, W. H., B. P. Flannery, S. Teukolsky, and W. T. Vetterling [1989], Numetical Recipes:
The Art of Scientific Computing, Cambridge University Press, New York.

Winston, P. H. [1992], Artificial Intelligence, Third Edition, Addison—Wesley, Reading,
MA.

B-29

A4

Figure 1. Schedule for a Ten Week Course Having a Two Week Offset

B-30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N T S N N D O
Pipe 1 Course A
Pipe 1 Course B
Pipe 1 Course C
Pipe 2 Course C
Pipe 2 Course A
Pipe 2 Course B

Figure 2. Example of Two Pipes
(Pipe 1 = [ABC] has no gaps)
(Pipe 2 = [CAB] has four weeks of gaps)

B-31

Ala
Alb
Alc
Ald
A2a
A2b
A2c
A2d
Bla
Blb
Blc

B1d

Ble
B2a
B2b
B2c
B2d
Cla
Clb
Clc
cid
Cle
Clf
Clg
Clh
C2a
C2b
C2c
ca2d
C2e
c2f
C2g
C2h
Dla
D1b
Dlc
Dlda
Dle
D1f
Dlg
Di1lh

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890
222228888888 ... carelesecacssslosacscssalosssacess|sennaaanat
ctteerecet..COCEEEEEEEEE. . s Taretncesalannonnnns]
.0......l:..o...o..:...lhhllhhhh}!hhhh.-.:........i[l..t..l.l:
........l:.........:........‘:..'...dddddddddddd.l....-....:

l
|

3
® o o o000 0 00

. e -bbbbbbbbbbbb. es e ceecsssnecisscsncsenae HEEEEERE R
es e 0 s s es s ssaace affffffffffff. s e s sessvscsesosessanecs
....o-o..l.....-...:.........:.-CCCCCCCCCCCC..--.I....--‘..:

.o.ooa-.-:.-..a..-.:;...a-.-.:.--o.n--.:.-oogggggggggggg.-.:
000000000000...l...:.--.....Q=....o.0..=....0....|...0..0..:

teeee22.CCCCCCCCCCCC sesanncsionnsocasealocasnssns]
PR SRR o) o) =))) =) =1 =) =) =) =) - X JANAPAUIIRAE AP
B S ST EETE L EEE L R
tececcccctecncncacstoccccsacansiansss hhhhhhhhhhbh.|.ooeeaaaes
|
|

L3
® e 8 0000000

-
® e o 00800 800

ceoscecases?s.dddddddddddd..ccctesercccsotasncccnan
B 2SS T« fo o [e fo o fo o (o {o o {o [NV S
ceteercecteceaneneatoccacece FEFEEEEFEEFE.)it
ee s cceecsesltesecscssnsatesccsccccsstensscas s CCCCRCCELLCEE 000
000000000000, .ccceteecccssselosaccscnsionsaccens|oecanannst
ee2.000000000000...2cccccecsasioscscscncciocenannns]|
ceeecees000000000000..cccceecteceansasaioncscncan|anaacnaant
S ST Y--T-Y-T-1- 11 1-1-1- DAUUAr DA SRl [

|

I

-
® e 08000 00

cecesssestaesessss000000000000. . cccncatoccccanns
ceceecccalosncsseansions.dddddddddddd. . cteeecannns
cececsssctecscssessiossccesss ibbbbbbbbbbbb..ceaces]|oeenaaaans
ceceecsselessescscalosacsesanlonseascscoct EEEEEEEFEFEE.
000000000000, ccccectececssncctosenssaselossssocns|acecnnanat
«e-.000000000000...2ccececccctoscaccascZonacnonns]
cee2000.000000000000..cceccecioccccsccciocnccnnas]
ceeeseees2..000000000000.c.cciarerccaceioceccaces]
tececcceateceansaeslCCCCCCCCCCCC . ereaeelonannnnce |ocennanaat

|

|

-
® 80 00000800

..0.‘0-o.:.no.ot-btgcooba.eeeeeeeeeeeeo:.-..tco.-

.........3....--...:.........:..gggggg’ggggg’g-....
-..-.....:........-3.........:.--...-..:-.......hhhhhhhh.hhhh

-
e o e o0 000 oo

ceeceassCCluicececncslonancncce ececosscssloonsccososs|[oocecnccad

o.o.-.'oo:dd--.-...:.....on-n:.u..o-.-.:...o-o.ou ee s es s e s
es e s eesesteslBecesoetocsccscsossosstonsessoscscsenscscsascoe R

0-00-.-..:...oo-ocgg-o.o...oog.o..-...o:.....oo-o

3
* 8000 00000

|

|

|
S P) - JPAr SPUDRPAPRPUPUPRPE TR SO (PO

|

ceeesecealossesesesteshliiiitiiiiiienciticencnans]|

|

-.-.-....:.........:....ee...:-.--..-..2...-..... e ® e 5 e 000

R SO SRS o - ST S I

123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6

Figure 3. A Feasible Schedule for FFG7

B-32

Figure 4. An Enumeration Tree for a Schedule Having Three Courses
and Two Pipes (6 x 6 = 36 possible schedules)

B-33

14

15

Weeks

16

17

18

19

20

21

22

23

24

25

26

Figure 5. Potential Convening Dates for a Fourth Offering of Course A
(Earliest Possible Convening Date is Week 8 and the Offset is 2)

B-34

Q QUI] I0J Sk Qwes € 9 0¢C8 81

G QuI[JOJ S& oues ¢ S 1 LT

(9vDUA =) oweu 251000 (T) 1! 14 a 91

g QuI[JIOJ Se auwes € 9 ov8 S1

Q SUIf JOJ Se Jues € 9 Ov8 14}

G oul[I0J Se ouIes T S (44 £l

(SOVINAVN =D) owreu 951105 (T) ! b 0 4!

Q QUI[JOJ S Jues € 9 08¢v 11

Q 9UI[10] S& Ques € 9 086 01

G aul[10J se awes (4 S (494 6

(€0SM =€) oweu as1mo0d () I 4 d 8

Q QuI[10] Se aures € 9 01 ¥ L
S$yooMm Ul 1edA [eosyy snoiaaid oY) woij 1940 —A11ed (g)
1J1US U9AIS © JOJ SISSB[O QAIINIISUOD UM SYIIM UI 1380 (7)

JIys UoAI3 B 10J S9SSEB[D JO Joquunu Qv € 9 021l ¥ 9
Sy99m Ul 13Ul 9s1n0d ()

9SIN02 U2AIS ® 10 s3Iy Jo 1oqunu () ré S A N4 S

(SASHH = V) oweu 951000 () 1 4 v 4
surpadid yoes ur $951n02 Jo qunu (7)

sourjadid jo 1oquinu (1) 7 Y 78 €

oureu aurpadid (1) I 4 L—Dd4 C
a[npayos 9y} Jo s1eaA Jo roquunu ()

1eoA [eosty Sunaeis (1) Z I T S661 I

SpdL Jo uondrisaq SPIRLY 9dA], Bje(q urg

Jo'oN | eleq

(3114 ®ieq Induj [endY) wajqord Sunnpayds auipdld L—944 3L ‘I AqEL

B-35

o 0 o0 o0 o0 o0 o0 O Ia
or 0 0 o0 o0 o0 o0 O (49
€ 0 0 o0 o0 o0 o0 o 10
0 0 o0 0 d
o0 0 o0 0 0 14
9 0 o0 0 (A%
o 0 0 0 1A%
y 3 3 ® p 2 q ®
sse[) PIys—asano)

(6] = 9100G [e10]) ¢ 31n31 ul pajensny[] ANPAYIS Y} 10] SAI00S SSB[D °T d[qEL,

B-36

0 0 £C (44 q
0 0 61 61 3
0 0 91 91 3
0 0 €l €1 9
0 0 11 01 P
0 0 L L J
0 0 14 14 q
0 0 I T e
91098
9.100S uoneoIA M
deo jodae], J1B)S [BN)OY |33 J98ae], | aurpadig

¢ 2anS1,] u1 pajexysny[f A[NPIYOS 3y} 10J $2.1008 sulpadid °€ dqeL

B-37

,.c::c.« uoIynjos A[GISey ONy

01¢c
8LT

€01
| 4

ovvi
17

oS~ W

ocy
LE

<t &

0801

<~

00CI

Y

ocy

< <

awir) [£)0)

2100s [eulj
jududAoxduy

[ed0] Sn|d Apaain)

ou) [e)0)
3J400S [eulj
juejsissy uippdid

souijadid ‘ON
$95aN0)) *ON
So1jSLIdjORIRY) WR[qOIJ

7 SVd

7 LDV

Load

TAT ¥

TAT 1

dng 68

JwIeN wR[qoIg

wy)LI0S[y £paals) ay) Y jueysissy surpdid Jo uospedwo) [euonendwo) *p QL

A.Oﬁm paseq—98y ZHIA (S & uo Spuodas ul aJe soull} =<v

B-38

81 LT 91 91 81 81 urt) [ej0)
€67 | 14 8¢ € 0 0 9.100s Jeuy
£6¢ 17 8¢ € 0 0 91025 jerrul
gunueagox g AreuonnjoAj
00¥2ZT | 000291 0089y 00917 008+9 I Juwy [ejo3
€56 S€ S€ ST (4 0 31005 [euy
086 144 6t 8¢C (4 0 91095 Jeniul
WyjLI03[y d1jeudD
541 0c1 8L 871 I€1 I) jejo0)
€L8 9¢ LT 8 ¢ 0 9100s [euly
086 144 6¢ 8¢ T 0 3100s jeniul
[oaeag nqey,
€< 01 I I ! I uip [ejo)
8LT | 4 61 0 0 0 2100s [euly
jududAoxduwy
[B207] SN[Apada5)
ZSvd | TIOV | LOAd TAT v | TAT T | dng g
swaqoIg SWILI03]Y

(‘0¥Z/000S uo1Ie)ISII(B U0 SPUOIIS Ul 1k SaW) [[V)
suyjLI03[y 3y Jo sishjeuy [eordury °S afqe],

B-39

sapou (00‘000°C 193¢ pajeuluLd),

8LT (4114 000°000°c | 8LT LY 077 1T SVd
81 6L9Y €EI‘9S0‘T | 1T 10°0 81 L—Dd4
0 0 0 | k4 20°0 | K4 ¢ IOV
0 0 0 0 €0°0 0 TAT b
0 0 0 0 10°0 0 TAT 1
0 0 0 0 10°0 0 dns 68
102S QuwIlL L, SOPON 31008 ET TR} punoyg JuIeN
uonerdwnuy I dury Apadan 1oM0] uwrqoId

("uonpe)SII(paseq eyd[y ue U0 SPUOIIS UI AIe SIW) [[V)
wn oSy uonesawnuy jidury ay) Jo sisd[euy [edndwy °9 3qeL

B-40

01 ST 0€ SES £ S 103

08 vS 0€ ST 0L STSIS S 1 S09

08 S 0€ ST 011 0T §SSESS 9 ! 01°

011 0¢ I 1 014

14 09 ! 6 €03S3L

12 09 I 6 01S9L,

ps 09 I 6 T0¥S3L

(s)uoneanq CFTTTREY 1 T9) $951Nn0)) $321Nn0SY auBN
35an0)) 9SIN0)) JAquINN JIquInN JaquInN w[qoId

SWA[O1J IS, JO SonsIdRIRY) ‘L dqBL

B-41

! 3[npPaYdS AqIsed] ON 10J
€ € S09
L 6 012
L 01 (Y
44 144 €07S3L
Ly 8y C0ISAL
(32 8P T0IS3L
JN)SLINJY APIIAIN) guijeouuy paje[nuis duweN
PapPaaN $10JoN1jsuj Jo JaquInN urqold

wR[qo1J SuInpaydS [00YIS —V Y} U0 INSLINIF APIdLY))
pue unpLIog[y Sulfeauuy paje[nuis 3y} Jo uospeduio) g IqEL

B-42

Appendix C

Generalized Networks

INTERFACES IN
COMPUTER SCIENCE
AND OPERATIONS
RESEARCH

Advances in Parallel Optimization,

Telecommunications and
Metaheuristics

EDITED BY

Richard S. BARR,
Jeffery L. KENNINGTON, and
Richard V. HELGASON

Southern Methodist University
Dallas, Texas, USA

KLUWER ACADEMIC PUBLISHERS
Boston/London/Dordrecht

Cc-2

6

AN EFFICIENT DUAL SIMPLEX
OPTIMIZER FOR GENERALIZED
NETWORKS

Jeffery L. Kennington and Riad A. Mohamed*

Southern Methodist Universily
Dallas, Texas 75275-0122

*SABRE Decision Technologies
DFW Airport, Texas 75261-9616

ABSTRACT

This Chapter describes a specialization of the dual simplex algorithm for the gener-
alized network problem. We use a dual two phase method along with efficient dual
partial pricing schemes and specialized routines for the dual ratio test. In comparison
with CPLEX 3.0 on a set of ten benchmark problems, we found that our special-
ized dual code performed 20 times faster than the best CPLEX optimizer. Problems
having 10 to 20 thousand arcs are routinely solved in under 10 seconds on a 60MHz
DECStation 5000/260 with our rapid dual generalized network optimizer.

1 INTRODUCTION

The mathematical problem of finding a minimal cost flow through a capacitated
network is a fundamental problem in both operations research and computer
science. A generalization of this model which allows for either gains or losses
as flows pass along an arc is known as the generalized network problem. Gen-
eralized networks have been used to model a wide array of applications in
many engineering and economic areas. Applications that involve either gains
or losses include electric power carried on transmission lines, cash management
that involves the time value of money, and manufacturing processes of vary-
ing efficiencies. Other applications allow for flow conversion from one unit to
another. Further discussion of a wide variety of applications can be found in
Ahuja, Magnanti, and Orlin (1] , Glover, Klingman, and Phillips [11], Glover
et al. [10], and Mulvey and Zenios [19].

152 CHAPTER 6

1.1 Problem Description

Let ey = (i, j) denote an arc from node i to node j having multiplier ax associ-
ated with node ¢, and bk associated with node j. If i = j, then arc ex has one end
which is incident on node z, with a single multiplier ak. Let V={1,2,.. .,m}
denote a set of m nodes, and let A = {e1,¢e2,. ..,en} denote a set of n arcs.
The corresponding generalized network can be represented on a directed graph

<V,A>. Forer= (i, 7) let

ap, forf=1
=4 b, forl=3j
0, otherwise.

Let G = [¢*lg?].-.lg"], be an m x matrix called the node-arc coefficient ma-
trix. Let the n-component vectors ¢, l,u, and z denote the arc costs, arc lower
bounds ,arc capacities, and arc flows; respectively. Let 7 be an m-component
vector representing the right-hand-side. Let G={zeR":Gz=rl<z < u}
denote the set of feasible solutions. The generalized network problem can be
stated mathematically as min; {cz : z € G}

1.2 Survey of Literature

Generalized networks have the special structure that the basis can be repre-
sented graphically as a collection of trees and quasi-trees. In 1973, Glover,
Klingman, and Stutz [12], developed the first specialized primal simplex code
(NETG), that exploits the special graphical structure using the extended aug-
mented predecessor index procedure. In 1987, Glover et al. [10] enhanced
NETG, by investigating various rules for the starting strategy, the pivot se-
lection criteria, and degeneracy handling. In 1984, Brown and McBride [6]
presented a detailed description of a complete implementation of an efficient
primal simplex system specialized for the generalized network problem. The
system uses a preorder traversal method in addition to the predecessor, depth,
and cycle factor to represent the basis. To enhance the algorithm performance,
Brown and McBride included a basis aggregation technique, 2 dynamic queue
scheme for selecting the entering variable, and a big-M starting strategy. In
1985, Engquist and Chang [8] presented a brief description for implementing
the primal simplex code GRNET for generalized networks that is based on the
Jabeling procedures of Barr, Glover, and Klingman [3]. Mulvey and Zenios [19]
investigated the performance efficiency of the primal simplex generalized net-
work code LPNETG, when using different internal programming tactics such
as alternative pivot strategies, column normalization, and the big-M starting

C-4

Dual Optimizer for Generalized Networks 153

method. In 1988, Nulty and Trick [22] developed the first primal simplex code
written in the C language. They use the predecessor, thread, reverse thread,
and the level node labels presented in Kennington and Helgason [15] to repre-
sent the basis. In 1988, Bertsekas and Tseng [5] proposed a new class of al-
gorithms, that adopt the nonlinear programming relaxation methods, to solve
the linear cost generalized network problem. The algorithm, is based on the
iterative improvement of the dual cost while maintaining a flow that satisfies
complementary slackness. In 1992, Clark et al. [7] developed and empirically
tested two primal simplex parallel algorithms, GENFLO, and GRNET2, for
solving generalized networks. Both codes use a gradient penalty method to
find a starting feasible solution.

1.3 Objective of Investigation

Although several papers have been presented that discuss the development
of specialized algorithms and software implementations for solving generalized
networks, none of these are based on the dual simplex method. The objective
of this investigation is to develop and perform an empirical analysis of a spe-
cialization of a dual simplex algorithm for the generalized network problem.
There are two key issues in the development of a dual procedure: (i) the cre-
ation of an effective dual pricing scheme, and (ii) the creation of an efficient
scheme for computing an updated row of the coefficient matrix which exploits
the underlying network structure.

2 THE DUAL SIMPLEX ALGORITHM

Duality theory in linear programming is well known. Each variable in the pri-
mal corresponds to a constraint in the dual, and each constraint in the primal is
associated with a dual variable. The dual simplex method has received limited
attention, and its role has been limited to sensitivity analysis, parametric pro-
gramming, and the solution of integer programming problems (see Nemhauser
and Wolsey [21] and Parker and Rardin [23]).

There are some instances where the dual method has an advantage over the
primal method, see Ali, Padman, and Thiagarajan [2]. The reported results
of their dual simplex code, specialized for pure network problems, illustrates
improved performance on a subset of the benchmark of standard NETGEN

C-5

154 CHAPTER 6

problems (Klingman, Napier, and Stutz [16}), and an additional set of larger
transportation problems.

Under the non-degeneracy assumption, the primal simplex algorithm starts
with a basic primal feasible solution and pivots to a new one with an im-
proved objective function. These pivots are repeated until primal optimality 1s
achieved, i.e. obtaining a dual feasible solution. The dual method starts with a
dual feasible solution and pivots to a new one with an improved objective func-
tion, while attempting to reduce primal infeasibilities. This is repeated until
dual optimality (primal feasibility) is achieved. In this section we present the
dual simplex algorithm, pricing techniques for selecting the leaving variable,

and a specialization for generalized network problems.

Let m; denote the dual variable associated with the it? conservation of flow
constraint, and let A; denote the dual variable associated with the lower bound
constraint on the jtP variable, and let p; denote the dual variable associated
with the upper bound constraint on the jth variable. Let D = {(re®R™,AE

npeR): GTr+r—p=¢6 A2 0, p > 0}, denote the set of dual feasible
solutions. Therefore, the dual problem for the generalized network problem is
maxy s {rTHA - (m, A1) € D}. For any € V, let ¢ = A(§) denote the
index of the associated basic variable z4, and let ef denote the corresponding
column of an m X M identity matrix. Recall that G is an m X7 matrix with
full row rank, gl € R™ denotes the jt* column of G, B denotes 2 basis. Let
% be an extreme point and let the flow variables be partitioned into basic and
non-basic variables. A non-basic variable must assume one of it’s bounds, 1.e.
Fp = lp or Tx = Uk- Let \i={k:Zx = l,,ex € A}, denote the set of indices
of the non-basic variables at Jower bound, let Ny = {k:Zr = ur ek € A},
denote the set of indices of the non-basic variables at upper bound, and let
N = NiUN,. Let £N € ®"~™ denote the vector of non-basic variables; let
B € ®™ denote the vector of basic variables; and let B = A\WN denote the
set of indices of the basic variables. Recall that m € ™ denotes the vector of
duals associated with the flow conservation constraints Gz =T, and that A(%)
is the index k, such that ex is the basic variable associated with constraint .
Let o = Ck— ng*, k€ A, denote the reduced cost for arc €k The dual simplex
algorithm can be stated as follows:
Procedure Dual
Input: ¢, G, l,r,u,B,J\fz,Nu.
Output : £5,2",v".
begin

7« BB ok —cp — 79", KEN;
F = Twen, 0Fuk — Lien O b 58 — BT

Dual Optimizer for Generalized Networks 155

V¥ — D pen, CRUE T Yoren; Ckle +Lkes ckEE;
I —{ieV: (P <if)or (3} >u})}

while(Z # ¢)do
select § €Z; g — A(9); / * leaving variable x /
z —eiB 1 / * Tow § of basis inverse * /
w + sign(u, — £4)2G; / * updated row * /

E—{jeN 1w <0 U{j €N, :w; >0}
if(£ = ¢)then exit(‘unbounded dual problem’);

[6]«— maxjes { oL }; / * ratio test * /
s argmax; e s i
y—B1g% P —{i:y #0}; / * updated column * /

A { Eola) ipz, <,
-

(Eq=ug) iz, >u
Y5 q q

g8 — 2P - Ay, 1€P; T, — 2+ A / * flow update * /
if(6 < 0)then
) § ifzg=1, |.
or — 0 —bwg, kEN; 04 — 5 ifFy=u, |
Fe—74bz; v — 0" + 0,4 / * duals and objective update * /
endif

B —BU{sP\{a}; M —N\{s}; Nu—Nu\{s}; /+ basis update/
if(#, = lg Jthen M — MU {q};
if(£, = ug)then N, — N, U{¢};
IT—{ieV:(zf<iB)or (28 >uf)};
endwhile
end.

2.1 A Specialized Implementation for
Generalized Networks

The main operations of a dual simplex pivot are selecting the leaving variable,
calculating the updated row, determining the entering variable, and updating
the flows, the reduced cost, and the inverse of the basis. For generalized net-
works, most of these operations can be carried out on the tree representing the
basis, and the inverse of the basis is never calculated.

Calculating a row of the basis inverse, z = e!B~!, can be considered as a
special case of the dual calculations where the vector c is replaced by ef with
a single nonzero entry in position §. For more details on the specialized dual
calculations see Mohamed [18]. Let Z = {i : z; # 0}, denote the set of indices

c-7

156 CHAPTER 6

for the nonzero entries in z. Let B? be the basis partition corresponding to the
augmented forest component that contains node §, and let z¢ and e?, be the
matching partitions of z and e?. Suppose that B? corresponds to a rooted-tree,
T7. The system z?B? = ef can be solved using back substitution, and Z will
only contain the nodes in the subtree component rooted at node §. Suppose
that B? corresponds to a one-tree, 7° and consider only the cycle of T°. For
notation purpose, assume that the cycle nodes are numbered 1,...,7. First,
the 29 values for the cycle nodes are obtained using
1

! = and
! a1(1 — wywg -+ -wp)’ &

—a; . .
z§+1 = —z,i=1,...,m~-1
i
Then, the z? values for the remaining nodes in the one-tree are calculated using
back substitution. In this case Z will contain all nodes in the one-tree 7.

The calculation of the the updated row, w = 2G, is a dominant operation in the
dual pivot. Preliminary profile investigation revealed that, when using standard
matrix operations, approximately 50% of the time is spent in calculating w with
a complexity of O(mn). This time can be drastically reduced by exploiting the
sparsity of z and the special structure of the network problems. Let G* denote
the it? row of G. To exploit the sparsity of z, the updated row calculation is
carried out as follows:
w= Z %G,

i€z

This reduces the complexity of calculating w to O(]Z|n), where |Z| € m in
most cases. Let F' = {k : e = (i,v) € A,v € V}, the forward star of node
i, and let 7% = {k : ex = (v,i) € A,v € V}, the backward star of node
i. Let W = {j : w; # 0}. For network problems, G* can be represented
using the forward and the backward stars of node 7. This special structure of
the network problem has a significant influence on the sparsity of w, that is
W = Uiez(FP UT?). This reduces the complexity of calculating the updated
row to O(|2|#), where 7 is the average number of arcs incident to a node. In
practice f2 K n.

The entering variable, z,, and the change in the reduced cost, §, are determined
in the ratio test, which is conducted on the nonbasic variables in £ C W. The
updated column, y, is calculated using the specialized procedure described in
Helgason and Kennington [15]. The flow update is carried out only on the
basic arcs associated with the nodes in P. For additional information see
Mohamed [18]. This is followed by updating the reduced cost of the nonbasic

Dual Optimizer for Generalized Networks 157

variables in W, updating the node labels, updating B and A to obtain the new
basis, and updating the duals.

Let k denote the k* iteration of the dual simplex algorithm. Let 7(¥) be the
vector of duals at iteration k, let B(¥) be the basis matrix at iteration k, and
let D) = [B()]~1, Let ¢ € B be the leaving variable, and let § denote it’s
position in B. Therefore, the dual vector at iteration k+1 is defined as follows:

x(F+1) = cB(k“)D(kH), (6.1)

where
D+ = {I - ;}1—(1, - ef)eﬁ’} D®), (6.2)
P

cB(Hl) = cBm {I - (____cq c_ c,) e‘ie‘iT}. (6.3)
q

Substituting (6.2) and (6.3) into (6.1) we obtain

A {cB"" _ B® (Sq—_cs> eq‘eq‘T} { D _ ;1‘(-" — efyed” D(")}
q

Cq

and

- cB(k) D(k) _ cB(k) (Cq - C,g) efefT D(k) _ CB(") gg____eq._)ei'r D(k)
cq Yq

B(k) Cqg —Cs CéeiT A AT k
+c et B _(y —_ eq)eq D()
Cq Yq

1 - . .
= rf 4= {cB(k)yq (ff_ﬁ) el — cB(k)(y —ef)
Yq Cq

+cBY (——-——cq : c’) eled” (y — eq)} ei” D)
q

1 — . .
= 7f 4= {cB(k)yq (__c, cq> e + cB(k)(eq -y)
Yq Cq

+cB% (————cq c_ c’) e?(yg ~ 1)} ei” D)
q

= Pyl {cB(k) (e —y) — B el (u) } ed” D)

q Cq

= 7F 4+ 1 {cq - cBmy—— cq (cq - c’)}efrD(k)
Yq q

_ .B®
B Lt) W0
Yq

c-9

158 CHAPTER 6

= 0y (f’;«.) 0!
Yq

Therefore, the dual vector can be updated using x(k+1) = 7(F) 4 (g—:) z, and
the sparsity of z can be exploited in this update.

2.2 Dual Pricing Strategies

Since all nonbasic variables assume one of their bounds, primal infeasibility oc-
curs only when the basic variables violate the bounds. The dual simplex pricing
strategy to select the leaving variable z, has received very little attention in
the literature. Although the selection of the leaving variable appears to be a
simple operation, the exact strategy used is very important in the development
of an efficient generalized network code.

The standard approach for choosing the leaving variable is to scan the basic
variables and determine the variable having maximum bound violation. The
index of the leaving variable selected using the mazimum-infeasibility strategy

1S
=% ifZr<ly }

= argmax - o =
1 & keg{zk—uk if Zp > ug

Using this approach, every basic variable is scanned at each iteration, which
requires a node length search. This section presents techniques which improve
this search by performing a partial pricing where only a subset of the basic
variables are scanned.

Let p < |V| denote the page length. The fized-page pricing technique scans a
page of basic variables at a time. If one prices favorable, then it is selected;
otherwise, another page is scanned. This continues until either a favorable
variable is found or all basic variables have been priced. The list of basic
variables are treated in a wrap-around fashion. Let £ denote the index of the
most recently priced entry, with £ initially set to one. The fixed-page pricing
technique can be described mathematically as follows:
Procedure : D_Fixed_Page_Pricing
Input: L.
Output: 4 q.
begin

J—=q—A; —0;

while(j < |V| & ¢=0)do

i —1; p— min{p, [V|};

c-10

Dual Optimizer for Generalized Networks 159

while(i < p)do / % price p basic arcs * /
k «— A(%); / * get basic arc index associated with node £+ /
L —z, ifx < ly;
Ap — & Tp —up if Tk > ur; / * get the bound violation value * /
0 otherwise;
A, max .
[q] " argmax {8k Ak
ie—i+1;je—J+1 £ —mod(£,|V]) + 1;
endwhile
endwhile
end.

The fixed-page pricing strategy can be enhanced by maintaining multiple pric-
ing candidates. A candidate-queue, which is a cyclic list of varying length, is
used to keep the indices of the favorable variables (variables violating their
bounds). The candidate-queuve pricing technique starts with a general scan
pricing a set of basic variables to select the most favorable variable (the
variable having the maximum bound violation), while placing other favorable
variables into the queue. At each iteration a subset of the queue entries are
priced. The most favorable variable becomes the leaving variable, and other
variables that price favorable are placed back in the queue. A general scan is
used to replenish an exhausted queue, where each scan starts where the previous
one has ended.

Let Q, called the candidate-queue, be a sequence of entries, and let w denote the
maximum allowable size of the candidate-queue. Let Q[1] denote the first entry
of the candidate-queue, and let Q[i . .. j] denote entries i through j. Let Q&&(t)
denote the concatenation of (t) to the end of Q. Let p denote the number of
queue candidates to be priced in each iteration. Let £ denote the index of the
node associated with the most recently priced basic variable, with £ initialized
to one. The candidate-queue dual pricing technique can be represented as
follows:
Procedure : D_Candidate_Queue_Pricing
Input : £, Q.
Output: 4,¢,Q.
begin
qe— 2,05
while(Q # ¢ & ¢ =0)do
i —1; p— min{p, |QI};
while(i < p)do / % price p queue entries * /
j—QI; Q+—QI2.. RlaliF / * get the first queue entry * /

c-11

CHAPTER 6

160

k— A(j); / * get basic arc index associated with node j * /
Iy — Tk if 2 < U3

A =< Tp—up ifZp> g / * get the bound violation value * /
0 otherwise;

argmax
(Ilc i arimin {8k Ak
if(Ar > 0)then Q — Q && (k);
ie—1+1;
endwhile
endwhile

if(¢ = 0)then D_Generalscan(£,4,Q); [* replenish the empty queue * /
end.
The mechanism for replenishing an empty queue, is to perform a general pricing
scan on k basic variables, and place the favorable arcs into the queue. The
general scan procedure can be stated as follows:
Procedure: D-General.scan
Input: £, Q.
Output: £,q,Q-
begin

q—=A0g 0,1

while(j < [V| & ¢=10)do

i1
while(i < k & |Q| L w)do
k— A(D); / * get basic arc index associated with node £ /

Iy — Zx if T < li;
Ap — < Tp— U if £ > ug; [*get the bound violation value * /
0 otherwise;
q argmax .
k| argmin {Bk Agks
if(Ag > 0)then Q — Q && (k);
ieid1;j—j+1; £emod(g, V) + 1
endwhile
endwhile
end.

The above pricing strategies (maximum—infeasibility, fixed-page, candidate-
queue) are similar to strategies that have been used in the primal algorithm.

For problems having 4000 or more nodes, the pricing strategy can affect the

performance of the dual algorithm.

C-12

Dual Optimizer for Generalized Networks 161

2.3 Steepest Edge Dual Simplex Algorithm

In the simplex method, we proceed from one vertex to an adjacent one along
a selected edge. When using standard pricing, the edge is selected such that
the objective function improves the most along that edge. In the standard dual
simplex method, the size of the bound violation is taken directly to indicate
the gradient improvement. This can be regarded as measuring the gradient in
the framework of the current basic variables. In the steepest edge method, the
selected edge is the one along which the improvement of the objective function
is the highest with respect to the original solution space. This involves taking
into account the variables that change along the edge. That is, the selected
edge is the one that makes the largest, most obtuse angle with the gradient of
the objective function.

It is easy to show that the edge directions for a particular basic dual solution
are given by the rows of the corresponding basis inverse, B~!. To select edges
that are row-length independent, edge normalization was introduced, where
weighting factors are used for estimating the edge-length. The steepest-edge
pricing is one of a variety of methods for normalized pricing, in which the bound
violations are row scaled. However, it is not practical to calculate the edge-
lengths at each iteration. Harris [14], used a dynamic subset of the original
solution space as a working framework. An approximation of the weighting
factors are obtained using the Euclidean norm of the sub-vector consisting of
just the components in the current working framework. That is, the Harris’
variant of the steepest edge, called Devez, chooses the edges that are only ap-
proximately steepest. Goldfarb and Reid [13], developed a recurrence formula
for the squares of the Euclidean norms of the edge direction when pivoting
from one feasible basis to a new one. Forrest and Goldfarb [9], introduced
several new steepest edge algorithms for both the primal and the dual simplex
methods.

Let n; = ||e!B~1||%,i = 1,...,m, denote the length squared of row i of the
basis inverse. Following the previously described dual simplex terminology, the
steepest edge dual simplex algorithm, using the Goldfarb and Reid recurrence
formula, for a given dual feasible solution defined by B, N;, and N, can be
stated as follows:
Procedure : Dual Steepest_Edge
Input:c, G, I, r,u,B,N,N,.
Output : 28, zV v*.
begin

#ecBB Y op —cp—Tgk, kEN;

C-13

162 CHAPTER 6

Foer =Y e 0 — Lren, 95 ubs 8 — B~
v Trens ke + Len; le + Dren rEi s
for(i € B)do z«—€'B™Y i zz; / * initiate the row norms* /
while(3 € B : (&; < &) or (Z; > u;))do
La)=ZF ip =
taR) =%k if zf < Ik

G — argmax{ _s_ ™ yk=1,...,m;
Te i) _n"‘ B if 22 > ug
k

g — A(§); z — efB7Y
w « sign(uy — £4)2G; / * updated row x /
E—{jEN w; <0}U{j€Ny:w; >0}

§ maxXjes [i | . :

s] — argmax;; { w5 } ; / * Ratio Test * /
y—B-lg*; P={i:y #0} / * updated column * /

Zi-la) f g, <,
A~ !é‘:gy—ug! .)
- if 24 > ug
Yg

zB e——i?—Ay;,iE’P; Ty =I5+ A / * flow update * /
§ ifz,=1
o — o — bwy, kEN; 0 4—{ L9 };
! -5 ifE,=1uy o
v —v* + 0, / * update the objective value * /
7ex—62; te B lz
for(i=1,...,m:i#§)do / % update the norms /

05— 2 (*;’;) ti + (ﬁ;) 45

7; « max (n;,1+ (%:)2) ;

endfor

N (.,,% 45

B —BU{sN\{¢}; M —M\{s}y Mu—Nu\{s}; /* basis update+/

if(z, = 1, Jthen N; — MU {g};

if(£, = uq)then Ny — AN, U{g}

endwhile

end.
In the above dual steepest edge procedure, the standard maximum-infeasibility
strategy is used for selecting the leaving variable. The partial pricing techniques
were also extended to be used in variants of the steepest edge algorithm.

C-14

Dual Optimizer for Generalized Networks 163

2.4 An Initial Dual Feasible Solution

A solution #, defined by B, N}, Ny, is said to be dual feasible if the correspond-
ing dual variables (m, A, z) € D. Thus far, we assumed that the dual simplex
algorithms are initiated with a dual feasible solution. The strategy needed to
obtain a starting dual feasible solution was not evident. A starting basis B
for the generalized network problem is obtained by adding an artificial variable
(¢i,t = 1,...,m) with zero bounds, to each of the constraints Gz = r. There-
fore, the set of dual feasible solutions D4 = {r € ®™,)% € ®", A € R™,p® €
RO EeRT :GTr+ X —pf=c®, 7+ XN ~p¥ =&, A >0, >0, M >
0,4Y > 0}. In order to assure that D4 is equivalent to D, the artificial cost
vector ¢f is set to zero. Therefore, for this starting basis, 7 = 0, the arc reduced
costs are simply the arc costs, and any feasible solution of D, say (, A%, u%),
has a corresponding feasible solution (m, A%, XS, p®, u¢) where X — pé¢ = 7. In
the following sections, we introduce techniques for obtaining a dual feasible
solution from any starting basis.

Big-M Method

In this approach, the initial dual feasible solution is obtained by setting the
original variables (z;,7 = 1,...,n) to be nonbasic at the appropriate bound
based on the sign of the corresponding reduced costs. That is, A7 = {j &
B :o; >0}, and Ny = {j ¢ B:o; <O0}. Then, the artificial variables
¢ = 7, where 7 is the updated right-hand-side. An infinite upper bound is
assigned to the original unbounded variables, where infinity is approximated
by a large positive constant, usually called big-M. The dual problem becomes
max(xx uepa {77 -+IA—up}, and optimality is achieved when all variables
satisfy primal feasibility. Since the artificial variables have zero bounds, the
corresponding flows will be forced to zero at optimality. Also, variables with
big-M upper bounds will be driven to a smaller value. Other big-M approaches
have been suggested to obtain a dual feasible starting basis (Murty [20]).

Two Phase Method

The big-M approach for setting the initial basis is not recommended because
of difficulties in making the appropriate choice of M. To avoid this critical
setting of the big-M value, a two phase approach is usually used. In phase
1 a new problem associated with the original dual problem is defined whose
optimal solution is dual feasible for the original problem. The initial solution
is obtained by setting the original variables (z;,7 =1,...,n) to be nonbasic at

Cc-15

164 CHAPTER 6

the appropriate bound based on the sign of the corresponding reduced costs.
Unbounded variables with negative reduced costs are assigned to their lower
bounds, resulting in a dual infeasibility equal to the sum of the corresponding
reduced cost. Therefore, Ny = {j ¢ B : 0; < 0,uy is finite}, T = {j ¢
B : 0; < 0,uy is undefined}, and Vi = {j ¢ B : 0j 2 0} UZ. The phase
1 objective function is obtained by temporarily setting the lower and upper
bounds to zero for all variables and introducing a new right-hand-side, 7 =
Zkez{"gk}- Therefore, the artificial variables { = 7, and the phase 1 objective
is to maX(r,, u)e D4 {#x}. This approach is similar to and influenced by the two
phase method developed by Professor Bixby in CPLEX 3.0. Let o; denote
the current reduced cost for j € Z. The contribution to dual infeasibility by
z; is (0 — (0 — 6w;)). Thus, the total sum of infeasibility is Yjer(bwi —
;). Differentiating with respect to §, the rate of change of the sum of dual
infeasibilities is Yieriwil = Zjez{"zgj} = zEjEI{—gj}. Let z, be the
leaving variable. Therefore, the rate of change of the objective function is
g, =eiz = el B 1F = 2(r — Tjcn, 9% ~ Ljem ¢°1;). Setting the upper and
lower bounds on all variables to zero, and setting the right-hand-side to be
defined in terms of the variables that violate dual feasibility, results in having
the rate of change of the objective function to be the same as the rate of
change of the sum of dual infeasibilities. This approach can be applied to
any basis, and it is not restricted to an all artificial starting basis. Another
intuitive interpretation of this setting is that for any j € the reduced cost
o = ¢j — mg? < 0. The objective function to drive o; to be nonnegative is
min {rg?}. Therefore, for all the dual infeasible variables the objective function

ismin{r ;7 9’}

The computational steps of the dual simplex algorithm in phase 1 are modified
to incorporate dual infeasibilities. The pivoting rules are as follows:

1. the leaving variable assumes the closest of the upper or lower bound, and
the reduced cost will assume the correct sign. Unbounded variables are
allowed to move only to the lower bound.

2. the basic variables remain dual feasible after updating the basis.

3. the entering variable assumes a dual feasible reduced cost.

In this approach the total number of infeasibilities is reduced without restricting
the total amount of infeasibility. Other methods that reduce the total amount
of infeasibility require fewer iterations, but need some extra computational
effort. Belling-Seib [4] presents similar ideas for the primal simplex method.

C-16

Dual Optimizer for Generalized Networks 165

Following the previous terminology, the phase 1 dual simplex algorithm can be
stated as follows:
Procedure Dual Phase 1
Input : cGIruBN.
Output : 28, zN v
begin
7 —cBBl;, o —cr—Tg", kEN;
Ny—{keN:op<0,up#0}; ZTe—{keEN:0or<0u =00}
Me—{keN: :o,>0}UT;
f—Yrerl-a"h 2B v = Yieron
while(Z # ¢)do
-z ifzf <0

§ « argmax; .y 3B if ik > 0,u8 # oo } ; / *leaving variable * /
q — A(g); z—eiB-1; / * row § of basis inverse * /
w — sign(—%,)zG; / * updated row * /

E—{jeEN:w;<0,0;20} U {jENM:w;>0, 0 <0}
if(£—¢)then£<——{j€Z'wJ > 0};

6 max_, €€ .
[s] argmax { w5 } / * ratio test x /
y— Bl P {’ v # 0} / * updated column * /

if(£, < O)then M —MU{g};
if(2, > 0)then N, «— N, U {¢};
A<—f~, P 3P~ Ay, i€P; I, — A, / * flow update * /
1f(6 > 0)then o} «— o — 6wy, k €N; 0y — sign(—E,)6;

—BU {s}\{¢}; M —NM\{s}; Ny — Nu\{s}; /= basis update x /
for(kel’&a'kZO)do

8 — B — B~1gF; / * adjust the flow * /
I — I\{k}; / * variable k became feasible * /
endfor
endwhile
dual(c,G,l,r,u,B,N, 28, zN v*);

end.

The search for the leaving variable in phase 1 of the dual simplex method is
enhanced by exploiting the infrequency (small number) of the dual infeasibilities
and the basis structure of generalized networks. The search is limited to small
parts of the basis components associated with the nodesinZ = {i € V : g} #
0,7 € I}; precisely the path from a node in Z to the root of the corresponding
rooted-tree component, and the nodes in the cycle along with the nodes in the
path from a node in Z to the cycle of the corresponding one-tree component.

c-17

166 CHAPTER 6

3 BENCHMARK PROBLEMS AND
TESTING ENVIRONMENT

A set of generalized network test problems were randomly generated using a
modified version of NETGEN by Klingman et al. [16]. The modified code, gen-
erates a variety of generalized network problems based on the user controlled
problem description. The main inputs are the number of nodes, the number
of arcs, the number of source nodes, the number of sink nodes, the number of
transshipment sources, and the number of transshipment sinks. In addition,
the minimum supply and the maximum supply specifications bounds the total
supply. The % arcs with high cost parameter specifies the number of arcs hav-
ing the maximum cost, and the remaining arc costs are randomly generated on
a user specified interval. Similarly, the % arcs with bounds parameter specifies
the percentage of bounded arcs, where the generated arc bounds are uniformly
distributed on a given interval. A seed is supplied to a random number gener-
ator that allows one to reproduce the problems.

Our modified code can be divided into two main segments. In the first segment,
a skeleton network that guarantees the problem connectivity and feasibility is
generated. Initially, the total supply is randomly distributed among the source
nodes, including the transshipment source nodes. Then, for each source node
a chain is created to carry the flow through a series of distinct transshipment
nodes, to be randomly allocated among a randomly chosen subset of sink nodes.
These chains are mutually exclusive except for the sink nodes. In the second
segment, randomly generated arcs are appended to the network to fill out the
total required arcs. The final network will contain approximately the required
number of arcs. For more detail about generating the arc costs and bounds see
Klingman et al. [16]. For the skeleton arcs, the from and the to multipliers
are set to 1 and —1, respectively. For each of the remaining arcs, the two
multipliers are randomly selected from the continuous interval [—1,1), while
insuring that the first multiplier is nonzero.

The comparison and examination of the efficiency for different solution methods
is of practical importance, and the selection of the test set used in the com-
parison is very crucial. Therefore, we generated ten test problems of various
sizes and structures. The number of nodes ranged from 1,000 to 15,000, and
the required number of arcs ranged from 3,000 to 90,000. The characteristics
of the test problems are given in Tables 1 and 2. The naming convention is
G_m_n for a generalized problem having 7K nodes, and 7K arcs. All testing
was performed on a 60 MHz DECStation 5000/260 running the Ultrix 4.3a op-
erating system. The reported performance measures are the number of pivots

Dual Optimizer for Generalized Networks 167
Table 1 Characteristics of test problems one through five.
Problem
Specification G01.03 | GO1.06 | G02.06 | G02_12 | G-04-12
Seed - 85 173 319 51 920
Nodes 1K 1K 2K 2K 4K
Axcs 3K 6K 6K 12K 12K
Sources 100 100 200 200 200
Sinks 100 100 200 200 200
Trans. Sources 50 50 100 100 100
Trans. Sinks 50 50 100 100 100
Chain Length 8 8 10 20 25
Min Cost -1K 2K -1K -3K -4K
Max Cost 10K 10K 10K 10K 10K
Min Supply 10K 10K 50K 50K 50K
Max Supply 20K 20K 50K 50K 70K
Min Arc Bounds 10 10 10 10 10
Max Arc Bounds 1K 1K 1K 1K 1K
High Cost Arcs 58% 40% 29% 95% 78%
Bounded Arcs 70% 9% 87% 73% 92%
C~19

168 CHAPTER 6

Table 2 Characteristics of test problems six through ten.

Problem
Specification G040 | G_0920 | G09.45 | G-15.45 G-1590
Seed 11 194 239 357 421
Nodes 4K 9K 9K 15K 15K
Arcs 20K 20K 45K 45K 90K
Sources 200 200 500 2000 2000
Sinks 200 200 500 2000 2000
Trans. Sources 100 100 250 1000 1000
Trans. Sinks 100 100 250 1000 1000
Chain Length 25 50 100 200 400
Min Cost -2K -1K -3K -3K -3K
Max Cost 10K 30K 30K 30K 30K
Min Supply 70K 80K 90K 90K 90K
Max Supply 80K 90K 95K 95K 99K
Min Arc Bounds 10 10 100 100 100
Max Arc Bounds 1K 1K 1K 2K 3K
High Cost Arcs 73% 20% 84% 75% 80%
Bounded Arcs 60% 30% 30% 60% 80%

Cc-20

Dual Optimizer for Generalized Networks 169

(or iterations) and the user central processing time rounded to two deci-
mal places. The user cpu time is obtained using the standard Ultrix function
getrusage, that returns information describing the system resource utilization.
This information includes the cumulative user cpu time, measured in microsec-
onds, consumed to the point of the function call. In the implementation of the
simplex algorithm, getrusage is called immediately preceding and immediately
following the call to the optimizer. The user cpu time consumed is obtained by
subtracting the first call returned time from the second call returned time.

4 COMPUTATIONAL EXPERIENCE
WITH CPLEX 3.0

To provide a comparison base, the test problems were solved using the four op-
timization algorithms available in CPLEX 3.0 (a state-of-the-art solver [24].)
This version includes efficient implementations of the primal simplex, the dual
simplex, the network simplex, and the barrier algorithms. All CPLEX runs
were made using the default parameter settings, which activate the presolver
and the aggregator problem preprocessors. The presolver helps simplify, re-
duce, and eliminate redundancies in the problem presentation. The aggregator
attempts to make simplifying substitutions that reduce the basis size.

In the CPLEX dual simplex optimizer, the dual problem is solved using the
primal simplex presentation, where all the linear algebra is carried out on the
associated primal basis. The network optimizer, recognizes and exploits the
embedded network structure of the problem, and uses an efficient specialized
algorithm on the pure network portion to obtain an advanced start for the dual
optimizer. The barrier optimizer, is an efficient implementation of the primal-
dual method fully integrated with the predictor corrector basis crossover of
Megiddo [17].

The empirical results for solving the test problems using the four CPLEX
solvers are presented in Table 3, where the numbers in parenthesis represent
the number of phase I pivots. From the first four problems, it is clear that the
barrier solver performs poorly for generalized network problems, and it was not
run for the remaining ones. The CPLEX dual simplex solver is approximately
two times faster than the primal simplex solver for all problems except G-01.03,
G.15.45 and G_15.90. The over all time performance is 1.4 times faster than
the primal algorithm. Using the default settings, the CPLEX network solver

170 CHAPTER 6

failed to extract any network component for three of the test problems, and it
terminated with an unbounded network for problems G_09.45 and G.15.45.

5 EMPIRICAL ANALYSIS

The specialized big-M dual simplex algorithm is implemented in C, and the per-
formance in solving the ten test problems, using the three pricing techniques,
is shown in Tables 4, 5, and 6. For all testing M is set to 10°. Comparing
the big-M standard (non-normalized) dual RAMSES, using the three pricing
strategies, and the CPLEX 3.0 dual solver, it is clear that the dual RAMSES
with a candidate-queue pricing is the superior. For the G_15.90, it performed
approximately 30 times faster than CPLEX, 13 times faster than RAMSES
with a maximum-infeasibility pricing strategy, and 28% faster than RAMSES
with a fixed-page pricing strategy. On average, for the ten problems it per-
formed 20 times faster than CPLEX, 9 times faster than RAMSES with the
maximum-infeasibility pricing strategy, and 25% faster than RAMSES with
fixed-page pricing strategy. The fixed-page pricing strategy resulted in only
a 2% increase in the total number of pivots, while the candidate-queue pric-
ing strategy resulted in a 19% increase in the total number of pivots over the
maximum-infeasibility pricing strategy.

For the three pricing strategies, the standard (non-normalized) RAMSES per-
formed consistently much faster, and required fewer pivots than the steepest
edge RAMSES. This can be ascribed to the generated problem characteris-
tics of having arc multipliers in the range [-1,1], and uniformly distributing
the arcs among the network nodes, which results in basis inverse rows having
approximately the same length.

The specialized two phase dual simplex algorithm is implemented in C and the
performance in solving the ten test problems, using the three pricing techniques,
is shown in Tables 7, 8, and 9. It is clear that the two phase dual RAMSES
with a candidate-queue pricing strategy is the superior implementation. For
the G.15.90, it performed approximately 31 times faster than CPLEX, 13 times
faster than RAMSES with a maximum-infeasibility pricing strategy, and 29%
faster than RAMSES with a fixed-page pricing strategy. On average, for all
test problems it performed 22 times faster than CPLEX, 10 times faster than
RAMSES with a maximum-infeasibility pricing strategy, and 22% faster than
RAMSES with a fixed-page pricing strategy.

C-22

171

Dual Optimizer for Generalized Networks

JHomyau papunoquy),
JIOMIIU JUSISIX3-UOU IO [[RUIS,,

- - - - - 60'9222 | (ev01)86.¥% || ¢8°¥81¢ | (eg9¢ez)68¢ezL || sielor

T12188V963°C || - - L2°LL21 | 2018T || 2072911 | (¥6)GS081T ze9.81 | (1018)98922 || 06°G1™D
11291216222 || - - 96°01 6.1 | z0'98L | (9gz)ooier |l Le'666 | (1¥62)19091 | SV SI™D
01°6698.8%°T || - - £9'8 4882 16°201 | (981)896¢ £0°6v¢ | (9022)¥69.L S¥ 60™D
60°02668¥2 S || - - 80'9. | v61¢ £6'9. | (v6)e1ae £3°9LT | (8€92)¥6€9 0260™D
60°9L8SFVTT || - - gsee | sgie 2866 | (E¥C)¥CIG 0509 [(8121)2695 0z ¥0™D
60°8L8V61€1 || - - z8Le | vhle 01'ee [(89)87L2 qT6L | (8L91)896% AR RS
80°6e¥.L18°2 || 9861 | 61 Y/N oV/N |l 8911 (ve)¥631 S6°'1C (809)66€€ [ARAIN)
80°FY6¥8¥6'S || £18 91 8L'8 L2881 G8's (8%)9z8T 011 (99L)80%5 907200
L0°6€8157v9°¢ || 181 91 Y/N »V/N | 29% (£1)8801 0LL (118)z912 9071070
80°1199290°T || S¥ 0z |l eqe L¥9 gL'g (¥8)L¥9 06'¢ (862)5L6 €0°10™D
anfeA awLy, | 1)1 ouwILy, { sjoard aw g, SJOATJ awry, sjoAl] aureN
2A1303lqQO Joraxeqg {IOMIIN rengg [ewiag ‘qoxd

0°¢ uolsiza XHTJD Suisn syIomisu pazifersuss Suiajog ¢ aiqe],
o) o o o o o

C-23

CHAPTER 6

172

® o (] ® ®) [X
81 9p'6921 | 099¢Z | 6989L |l 22 £6'800T | ¥45¥2 | 08669 || 60°9272 | (S701)0PLYY || SIeIOL
1% 2L'6SS | 63311 | 0¥S52 || '@ LL%6% | 08281 | 99952 || 20°2911 | (¥6)SS0ST 06°91°D
g1 66088 | ¥eLL | €80S% || 1'% wiLe | 8819 | 860z |l go-98L | (9€2)901€1 || SFSI™D
V1 298 cIgg [szL9 |l L1 88'¢9 | ¥veg | S619 || 26°201 | (981)896€ S 60"D
Tl 9919 | 218]sges 191 182y | 98¢ [oo6F |l £9°9L | (6)z1zE 0Z°60°D
€7 8L°21 o9 | Lpee | ¥ vzt | 229 [spie [ze6z | (epe)veic 02 70™D
02 6591 81y | 298¢ | 6 6v'1T | LLe | 68se |l orge | (89)8¥LT [ANZIR9)
ST oLV 1.6 | 1061 | 6% 86°¢ gor | 0991 || 89°11 (ve)¥631 51750™D
81 o8V 08 | 99¢ |l 92 ge'g g61 | L.6T |l 98°8 (g%)9281 907300
8% 89°1 68 1821 | 9°¢ 621 8 ovgl |l 297 (£1)8801 907100
8'g 86°0 44\ 1.6 0% 69°0 101 | 0g8 gLe (¥£)279 £0°10™D
[el/I1] [e] ‘8o | resox || [2]/11] (2] ‘8o _| 1e10L (1] [e30L,
onjey || sumy sj0Ald orpey || sumy §)0ALJ suiLy, s30A1q swreN
ouL], a8pg jsedes)g ouLy, paepue)s (1vna) xXdaido ‘qoag

“Surond Ay[iqIsesyur-umuIXeur YIM SESINVY [enp W-91q 10] sIMsey ¥ 9[qeY,

C-24

173

Dual Optimizer for Generalized Networks

£¢1 vh'281 | £89¢7 | 89608 || €91 12:9¢1 | veeee | 00062 || 60922z | (s¥01)0vLyy || sielol,
0°0% ce'8e | e¢veIl | 2097 || S'€T vL6F | L8111 | 8e.5c || 202911 | (¥6)G808T 067S1°D
681 ¥G'9c | ozpL | OV9¥C || ¥'81 99z | L10L | s61ez [l 2098 | (9€2)901€T || S¥ST™D
Sy v6'¢c | 862 | 289L | 0L ev'el | 609g | ¥89L || 26'20T | (981)886¢ SF60™D
g'e 0L'1% | 268 | 6¥¥9 | 9°S 061 [sor | e699 |l ee9L | (¥6)zize 0Z°60"D
¥ 869 goL L60% || 09 88'¥ gL 80T¥ || 2962 (eye)veie 0z70™D
L'g 668 | 08¢ | wooy || L9 g6v |91y | oosy |l orge | (89)87L% (AR IR
8Y ¢v'g | g9s [e80z [S 197z |svs | 981 || 8911 | (3e)¥62l [ARARD
L'y 28°1 90¢ 60G% 6'G 0S'1 .61 ¢04¢ G8'8 Amvvowmﬁ 907¢0™D
9y g0'1 | 68 vl || 8°S 080 |98 WPl || L9F (£1)8801 90°10™D
vy 290 | 11 1001 || €9 er0 | ¥I1__ | 896 eLe (¥g)L¥9 207107
[el/[1] [e] [8eqa | 1®3o1 || [2]/[1] [2] | 8ea | Ie30L (1] e10L

Omuﬁ.m OG:,H mu0>mn~ Omaﬂ.m_” Osm.H maO\rm.nm QEﬂH wuo>mn~ @Eﬂz
auuLg, 28pgd 3sedee)g ouwILT, paepuejg (1vna) Xaido ‘qoadg

-Buorid o3ed-poxy Yim SHSIVH 1enP N-31q 10§ sins2y ¢ SIqEL

C-25

,

CHAPTER 6

174

@ o ® L L ®
el ¥9'691 | 0vL¥T | 6GF¥8 || 6°02 62901 | 69¢7Z | vric8 || 60°9222 | (SPOT)OVLPY || S[BIOL
602 88'6S | 90511 | 2€82% || 0°0€ 16'8¢ | 26601 | 5825 || 202911 | (¥6)9G061 06°61"D
161 66’1 | ¥S18 | 12292 || £'€2 0g'ec | 6¥18 | Q119% || 20°98L | (9€2)901€T || Q¥ SI™D
¢'9 9g'9T | 90.% | €9LL || 8'6 0011 | €192 | ¥¥9. || 267201 | (981)8868 || S¥°60°D
LG gL8% | €1¥ | L9¥9 || 89 951t | 1oy | L0v9 |l g9'9L | (¥6)Tige 057600
69 0% | SeL | 188¢ | 88 gee |ovl | 118s |l og6e | (e¥e)peic || 0T¥0™D
gg 666 | oy | Le9% || 96 gpe |11y | 199y [l oree | (89)8¥i 4RI
9% g6 | 099 | 168 |[19 161|009 | 6¥6o || 89'11 | (¥€)¥631 217500
g gL1 |8z 1669C || 9L LT |98 | vL¥G || 98'8 (£%)9281 9072070
L€ LT1 | 96 0091 || &% v01 | ¥8 0291 || 29% (81)8801 90°10°D
(2 ¥9'0 | g2l | gv0T || 29 pp0__ [Tel | 186 €L'g (7e)L¥9 £0°107D
e/ || [e] [Bea [resox || [&l/[1] || [e] | ‘8ea [resox | (1] [e30],
onyey || suIL], SJ0AL J onjey] || awig, SJ0AL] el], $30A1J ouIeN
oLy, 23pd jsodasyg oy, piepue)lg (1vna) Xaidd "qoxd

‘Surorad snenb-ajeprpued Yim SHSIWVY [enp W-81q 10 s3nsdy 9 2[qBL

C-26

175

Cc-27

g1 || ¥e¥C21 | z6122 | (8pe1)eetvs || 2'z || aeeoo01 | gogez | (1¥¢1)01289 || 60°9222 | (ep0T)0¥vLEY || sieioL

gz || v9-eee | oogor | (611)zsere || e¢ || ¥6-96% | 69¥21 | (611)8¥9%v2 || 20°L91T | (¥6)SS0CT 06°61"D
o1 |l 82286 | ogeL | (z1g)8sove |l 1z it 21128 | 2999 | (608)52502 || 20'9sL | (9gz)9o1er || ¢ve1 O
v'1 |l €5°9L ze1g | (9¥2)9959 L1l 9ze9 | 6v0z | (zvz)6g6s L6°.01 | (981)856¢ S 607D
g1 8029 |66 | (8L1)9g8s 6116907 | 198 | (8L1)698F €3°9L | (¥6)z1g8 05600
0 |l e8¥1 0€S (882)902¢ 8¢ Il 1601 868 | (882)z10¢ 2568 (eve)¥elie 020D
81 || 0881 90 | (z2)s06¢ 9z il 99°21 188 | (zL)o1¥e orge | (89)8vLg (AN LR

9z [l 187 6.5 | (98)sT61 6'c || 007 ovy | (9€)2991 89°11 (ve)¥631 [ARAIR)
1z || 9% 922 (19)¥2ze Lzl 1ee £61 (0g)sv61 ¢’ (ev)9zs1 9072079
1zl 9Lt 18 (z1)9L81 gell ez 8 (g1)2881 L9y (g1)8801 90710
6'C || £6°0 SIT (ov)8g6 07 | 89°0 gor | (6g)e1s eLe (¥e)L¥9 £0°10°D
(e] (e] ‘3ag 1230 [2] (2] ‘8o 1e30L, [1] [e0L

— awIry, sjoar g — awlg, sjoarg owILy, sjoAalrd sureN]

[1] o3py jsedeasg [1] piepuejg (1vna) Xa1do || ‘q9oid

‘Supnad Lpiqisesjur-wmuiixeur s SHSNVY [enp oseyd oms 0] synsay L S[qeL

Dual Optimizer for Generalized Networks

CHAPTER 6

Cc-28

301 1l 2013 | 081e | (321)66608 || 991 || a1'v1 | 2e88s | (3ve1)208LL || 60°9222 | (SPOT)OVLYY || SI®IOL
78l I 85690 | 29601 | (611)L209z || L'€5 || ¥o'6v | 62601 | (611)8925% || 20°2911 | (¥6)9801 061D
T11 1l S0t | €982 | (21£)6608% | ¢61 || L60v | #108 | (51€)8LL55 || 20982 | (9€2)901€T || S¥7ST°D
vy || 8v' e | L98c | (593)99¥L 99 |zeor | 1sec | (gv2)905L L6°201 | (981)896¢ S 60°D
¢e |l ¥6°08 | 10¥ (£21)£969 g¢ |l 1rer | ese (£41)9%99 £5°92 (¥6)513¢ 027600
9¢ |l 118 . | 909 (£8%)6¥76¢ 9g |l 8¢ g9L (882)zL0¥ 2968 (eve)veie 02°%0™O
ve (696 |69g | (22)96¥%F 2L llesy [etp | (zl)s9sy orge | (89)8¥L2 I v0D
¢v |[orz |18 | (92)8861 Ly llocg | ovs | (98)28e8 8911 | (¥8)¥621 AR
9y || £6°1 ¥0% (12)8¥82 66 |l 081 861 (09)z082 ¢8'8 (ep)9zsT 9072079
9% || 10T 16 (eD)9v¥1 9¢ [[¥80 |88 (e1)8Pp1 L9'F (e1)8801 90°10°D
1y 1 8g0 | 211 | (0p)Li0T g9 llero |orr | (68)aLe £LT (g)L¥9 £0°10°D
[e] [e] gclel [®30L [z] [z] ‘88 [e10L 1] [e10L

—_— Qam.ﬁ muo>mn~ — wsm,H. w¢0>mn.m msm.ﬁ wa0>mnm QE&Z
[1] a8py jsodeasg [1] paepue)g (1Ivod) Xd1d0 ‘qoag

‘Bund s8ed-paxy Yim SIS VY =P sseyd omj Iof sj|nsey 8 2[qEL

176

177

for Generalized Networks

imizer

Dual Opt

vel || L2081 | #6682 | (zpe1)LL188 || 612 || 98601 | 04282 | (3¥E1)ae818 || 60°972% | (S¥01)0VLFY || sieioL

g6l || 96765 | €801 | (611)e8z2% || 9'0¢ || 60°8¢ | 982,01 | (611)9¥892 Il 20°2911 [(¥6)SG0ST 067S1™D
ger il v6'8s | v118 | (21£)6609z | 9°€2 || 62°¢¢ | ¥108 | (z1£)9zsse | 2098 | (9¢z)9oiger || s¥s1™®
L9 |l y1ror | vebg | (SpT)S9¥L e01 || svo1 | 29%8 | (2¥2)L¥¥L L6°L01 | (981)896¢ ¢y 60™D
87 (| bzl | 18¢ (g21)08P9 0L Jlosor |10y | (gL1)28€9 £6°9L (v6)z12g 027600
69 | 82¥% | 909 (£82)z19¢ 86 |l 10¢ £19 (88z)169¢ 29'6% (evz)veie 0Z°70™D
vy || 292 | gz¥ (zL)66LY z6 |lese |61y | (zL)iLey orge | (89)8vLg [ANZIR)
ey 8sc |w99 | (98)r882 z9 (/881 |s8z9 | (9£)91%2 89°'T1 (vg)¥621 g1 20D
¢g || 191 8€% (09)615% gL |l e1'T L83 (09)19¥%% ¢8'8 (e7)9zS1 90720°D
9¢ |l 621 6 (g1)LL81 vy || 90T g8 (eD)¥ss1 L9V (g1)8801 90°10°D
v || 990 | gzl (68)9€01 9 I vp0_|ogr | (6£)996 gLT (¥8)L¥9 £0° 107D

[e] [e] [8ea e10L [z] [z] | 8eq 2107, (1] e0L,

— QETH mu0>mnm B wam..h mu0>mnm OEM.H mu0>mﬂm QEQZ
[1] odpy jsodooys 1] piepue)g (1Ivaa) Xa1do || 'qoid
+Burorid snonb-a7epipued YA SHSINVH [enp aseyd omg Jof sysey 6 9qe],

[) o o ® [) o o

C-29

178 CHAPTER 6

6 SUMMARY AND CONCLUSIONS

Generalized networks are used to model a diversity of practical problems that
include class scheduling, machine loading, manpower planning, resource distri-
bution systems, and currency exchange. This paper describes the development
of efficient techniques for solving generalized network problems. As in the pri-
mal simplex algorithm, the dual simplex method is initiated by an all artificial
basis. In Section 2.4 we introduce two approaches to obtain a dual feasible solu-
tion from any starting basis. In the two approaches, the nonbasic variables are
assigned to the appropriate bound based on the the sign of the corresponding
reduced costs. In the first approach, a big-M value is used to approximate the
upper bound for unbounded variables. For the three dual pricing strategies,
the big-M dual RAMSES code with a candidate-queue is superior. It achieves
a performance 30 times faster than the CPLEX 3.0 dual optimizer for problem
G-15.90, and 20 times faster for all the benchmark problems. However, the
success of the big-M method is contingent upon the selection of a proper big-M
value. In the second approach, this critical selection is avoided by using a two
phase method, where dual infeasibilities are temporarily permitted in phase 1
for unbounded variables with negative reduced cost. For the three dual pricing
strategies, the two phase dual algorithm with a candidate-queue is superior.
It achieves a performance 31 times faster than the CPLEX dual optimizer for
problem G_15.90, and 22 times faster for the ten test problems.

Acknowledgements

This work was partially supported by the Office of Naval Research under Grant
Number N00014-95-1-0645.

REFERENCES

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., Englewood Cliffs, NJ., 1993.

[2] A. Ali, R. Padman, and H. Thiagarajan. Dual Algorithms for Pure Net-
work Problems. Operations Research, 37(1):159-179, 1989.

Cc-30

Dual Optimizer for Generalized Networks 179

(3] R. Barr, F. Glover, and D. Klingman. Enhancement of Spanning Tree
Labeling Procedures for Network Optimization. INFORS, 17:66-85, 1979.

[4] K. Belling-Seib. An Improved General Phase-1 Method in Linear Pro-
gramming. European Journal of Operational Research, 36:101-106, 1988.

[5] D. Bertsekas and P. Tseng. Relaxation Methods for Minimum Cost Or-
dinary and Generalized Network Flow Problems. Operations Research,
36(1):93-114, 1988.

[6] G. Brown and R. McBride. Solving Generalized Networks. Management
Science, 30(12):1497-1523, 1984.

[7] R. Clark, J. Kennington, R. Meyer, and M. Ramamurti. Generalized Net-
works: Parallel Algorithms and an Empirical Analysis. ORSA Journal on
Computing, 4(2):132-145, 1992.

[8] M. Engquist and M. Chang. New Labeling Procedures for The Basis Graph
in Generalized Networks. Operations Research Letters, 4(4):151-155, 1985.

[9] J. Forrest and D. Goldfarb. Steepest-edge Simplex Algorithm for Linear
Programming. Mathematical Programming, 57:341-374, 1992.

[10] F. Glover, J. Hultz, D. Klingman, and J. Stutz. Generalized Networks:
A Fundamental Computer-Based Planning Tool. Management Science,
24(12):1209-1220, 1978.

[11] F. Glover, D. Klingman, and N. Phillips. Network Models in Optimization
and Their Applications in Practice. John Wiley & Sons, New York, 1992.

[12] F. Glover, D. Klingman, and J. Stutz. Extensions of the Augmented Pre-
decessor Index Method to Generalized Network Problems. Transportation
Science, T(4):377-384, 1973.

[13] D. Goldfarb and J. Reid. A Practicable Steepest-Edge Simplex Algorithm.
Mathematical Programming, 12:361-371, 1977.

[14] P. Harris. Pivot Selection Methods of the DEVEX LP Code. Mathematical
Programming, 5:1-28, 1973.

[15] J. Kennington and R. Helgason. Algorithms for Network Programming.
John Wiley & Sons, New York, 1980.

[16] D. Klingman, A. Napier, and J. Stutz. A Program for Generating Large
Scale Capacitated Assignment, Transportation, and Minimum Cost Flow
Network Problems. Management Science, 5(5):814-821, 1974.

c-31

180 CHAPTER 6

[17} N. Megiddo. On Finding Primal- and Dual-Optimal Bases. ORSA Journal
on Computing, 3(1):63-65, 1991.

[18] R. Mohamed. Efficient Dual Simplex Optimizers for Generalized Network
Models. unpublished dissertation, Department of Computer Science and
Engineering, Southern Methodist University, Dallas, TX 75275, 1995.

[19] J. Mulvey and S. Zenios. Solving Large Scale Generalized Networks. Jour-
nal of Information and Optimization Sciences, 6(1):95-112, 1985.

[20] K. Murty. Linear and Combinatorial Programming. Robert E. Krieger
Publishing Company, Malabar, Florida, 1985.

[21] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1988.

[22] W. Nulty and M. Trick. GNO/PC Generalized Network Optimization
System. Operations Research Letters, 7(2):101-102, 1988.

[23] R. Parker and R. Rardin. Discrete Optimization. Academic Press, New
York, 1988.

[24] Using the CPLEX Callable Library Version 3.0. Incline Village, Nevada
89451-9436, 1994.

Cc-32

.

Appendix D

o Distribution List

Donald Wagner 3 copies
® ONR 311

Ballston Centre Tower One

800 North Quincy Street

Arlington, VA 22217-5660
L

Administrative Grants Officer 1 copy
Office of Naval Research Regional Office
4520 Executive Drive Suite 300

° San Diego, CA 92121-3019

Director, Naval Research Laboratory 1 copy
Attn: Code 2627
4555 Overlook Drive

o Washington, DC 203755326

Defense Technical Information Center 2 copies
8725 John J. Kingman Road

® SDTS 0944
Ft. Belvoir, VA 22060—6218

Carol Voltmer 1 copy
° Office of Research Administration
‘ SMU
Dallas, TX 75275
|
\
®

D-1

o

